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INTRODUCTION

STRATEGY

'lJwo of the major concerns of the NASA Ames Research Center (NASA ARC) Advisory

Committee for Women (ACW) are that recruitment of women scientists, engineers, and technicians

needs to increase, and that barriers to advancement need to be removed for improved representation

of v_omen in middle and upper management and scientific positions. One strategy that addressed this

concern was the ACW sponsorship of a Technical Paper Contest for Women at Ames Research

Center. Other sponsors of the Contest were the Ames Equal Opportunity Council and the Ames
Contractor Council.

BENEFITS

The Technical Paper Contest for Women greatly increased the visibility of both the civil service

women and the women who work for contractors at Ames. The women had the opportunity to hone

their written and oral presentation skills. Networking among Ames women increased and a Total

Quality Management Spotlight Award was made to Robin Orans from the Center Director,

Dale Compton, for her pivotal efforts in organizing the contest.

VISIBILITY

The Technical Paper Contest increased the visibility of NASA ARC women both locally and

nationally. The women received recognition in the Center-wide newsletter, the Astrogram, and

during introductory remarks at the oral presentations of the top eight papers held in February 1992.

These introductory remarks included speeches from the NASA ARC Director, Dr. Dale Compton,

the Equal Opportunity Council Chairman, Dr. Masayuki Omura, ACW Chair, Deanne Tucker, and a

representative from the Ames Contractor's Council, Carolina Blake. National recognition was

received when the top eight papers were presented at the 1992 SWE National Convention and

Student Conference at a special technical session. Support from Ames also extended to four other

Technical Paper Contest participants and their papers were also presented at the Convention. Contest

participants attended many of the Convention activities and interacted with both students and regular

members. As of the writing of this article we have at least two new SWE members for the

Santa Clara Valley Section from among the Ames women who attended the Convention.

OBTAIN MANAGEMENT SUPPORT

Upon approval of the Technical Paper Contest idea by the ACW, the first priority of the

Technical Paper Contest Committee was to gain the support of the NASA ARC management. The

Committee was formed in July of 1991 and chaired by Robin Orans, P.E., the Wind Tunnel Test

Support Coordinator for the Aerodynamics Facilities Branch at NASA ARC. By mid-August presen-

tations of the Technical Paper Contest proposal were made to the Equal Opportunity Council,
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comprised of all Deputy Directors of the technical and administrative groups at ARC, and to the

Contractor's Council consisting of representatives from all major contractors at ARC.

The presentations included a timeline of activities, a request for funding, a list of the women who

had agreed to serve on the Technical Paper Contest Committee, and the men and women who had

agreed to serve as judges. Five judges were selected from ARC management, one from the

Contractor's Council and two from the Society of Women Engineers. The SWE judges were

Kathleen Harrer, Past National President, currently working at Kennedy Space Center, Florida and

Esther Williams, SWE Fellow, who works at Lockheed Missile and Space Company in Sunnyvale,

California. In addition, arrangements were made with the 1992 SWE Convention Program Chair,

Betty Preece, for a three-hour slot at Convention to present the winning papers.

Support of the Technical Paper Contest was obtained. Support included a travel budget for up to
five civil service women to attend the 1992 SWE National Convention in Orlando, Florida, for one

of the SWE judges to travel to the oral presentations at Ames from Kennedy Space Center, and for

reproduction costs of a NASA ARC Technical Memorandum. The Contractor's Council also agreed

to encourage its members to support attendance of up to five winners from their organizations at the

1992 SWE National Convention.

TIMELINE

A call for abstracts went out to the women at Ames in August 1991. The same topics as the 1992

SWE National Convention Call for Papers were used. Approximately 600 information packages
were sent out to both civil service women and women who work for contractors at Ames. Twenty-

five abstracts were received by the Ames Technical Paper Contest Committee at the end of

September. Copies of these abstracts were sent to the 1992 SWE Convention Program Chair.

Written papers were due in Mid-December to the Technical Paper Contest Committee. Of the

twenty-five women who submitted abstracts, sixteen submitted papers for judging. Judging occurred

during the later part of December and into early January. In mid-January, the Technical Paper

Contest Committee compiled the results and held a judges meeting. Two of the judges joined the

meeting via telephone link-up. Eight of the sixteen authors were asked to make oral presentations in

February of 1992. All eight oral presenters were judged to have papers meriting ARC sponsorship to

the 1992 SWE National Convention and Student Conference. Five of the presenters were civil

service women, two were from the Eloret Institute, and one was from Sterling Software. The top

three winners were announced at the beginning of the NASA Ames Technical Paper Session at the

1992 SWE National Convention and Student Conference. They were:

Carol B. Davies (Sterling Software) for her paper on "The Development and Application of the

Self-Adaptive gridE (SAGE),"

Huy Kim Tran (NASA ARC) for her paper on "Test Model Designs for Advanced Refractory

Materials," and

Leslie Yates (Eloret Institute) for her paper titled "lnterferograms, Schlieren, and Shadowgraphs

Conducted from Real- and Ideal-Gas, Two- and Three-Dimensional Computed Flowfields."

°°°
VIII



WHAT'S NEXT

t

The Advisory Committee for Women at NASA Ames Research Center will sponsor a Technical

Paper Contest for fiscal year 1993. Ideas for improvement which have come from the continuing

networking among the Technical Contest Participants, Technical Paper Committee Members and

Judges, and members of the ACW will be incorporated. The women who participated in this year's

Technical Paper Contest have been asked to do a series of lunchtime seminars open to all Ames

personnel. Some of the women have volunteered to participate in the SWE Santa Clara Valley

Section's Speakers Bureau or work on other committees. A number of other NASA Centers across

the country will be conducting their own Technical Paper Contests. Winners from these contests will

participate in a special NASA technical paper session at the 1993 SWE National Convention and

Student Conference in Chicago.

MORE INFORMATION

If you need more information about conducting and managing a technical paper contest please

contact me at NASA Ames Research Center, Mail Stop 227-5, Moffett Field, CA 94043. Phone:

415-604-5875. FAX: 415-604-4357. Internet: robin_orans@qmgate.arc.nasa.gov. Contact either of

the 1993 Convention Program Chairs, Judy McGoogan or Daryl Farley, about having the winners of

your organization's Technical Paper Contest make presentations at the next Convention.

To order copies of this report, contact Teresa Alvarez at (415) 604-6510, MS 241-7, Ames

Research Center, Moffett Field, California 94035-1000.
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EDUCATION: A SECOND CAREER _ _ _

Kong Cha Authement

Microcraft, Inc.

Ames Research Center

Moffett Field, California

/

SUMMARY

Education provides women with the freedom to choose their destiny and forge a life for them-

selves if desired or necessary. Many women are denied the opportunity of education while growing

up and must attempt to achieve such schooling later in life. For most women the decision to pursue

this education can represent a very traumatic moment in their lives. Having faced the dilemma and

decided to proceed results in a very satisfying feeling when success has been achieved.

Throughout human history, the male has been recognized as the provider and the female has been

relegated to the task of caring for the home and the family. Women have been conditioned, over the

years, to place responsibility for the economic well being of the household in the hands of the man.

Recent history has shown a trend away from male domination in the economic foray as more women

prepare themselves for meaningful careers by attending colleges or obtaining vocational training, but

there are still many women who are deprived of the opportunity for such career preparation. This

lack of opportunity, while institutionalized by societies in the past for all but the elite, need not arise

from open denial or exclusion of women. It can result, rather, from a failure of family, teachers and

friends to encourage the pursuit of further education by young women. Peer pressure to participate in

the social activities which are so much a part of today's secondary school system can also lead to

premature termination of further education. Many of these women who have been denied access to

career preparation often find themselves suddenly faced with the predicament of becoming single

heads of households. As such, they are ill prepared to seek employment which will provide an

income which is adequate to provide a comfortable life for themselves and their families.

It is not as bleak as it may seem. There are many positions available in industry which are open

to any qualified candidate. These positions can be capably filled by either a woman or a man but

generally, the more educationally prepared candidate will be chosen. This leads to exclusion from

consideration of women lacking adequate education or career training. Without a college education

or other career training, it is extremely difficult to find employment which provides an income which

is adequate to support a family. It is even more difficult for a woman to find such employment and

this burden is further complicated if there are young children involved. In order to qualify for mean-

ingful careers, such women must obtain the necessary education or skill training and the reality of

returning to school in mid-life is difficult to face. These women must continue to struggle to provide

the economic support for the family while finding the time to attend classes and study. However, for

those women willing to endure these tribulations to continue her education, there is a reward.

It is not impossible to obtain the education and career training necessary to qualify for these

positions if the woman is willing and able to attend school. By returning to school, or continuing her



educationor careertrainingby attendingcollege,awomannotonly learnstheskills necessaryto
qualify for more rewardingpositionsbut alsogainsself confidenceandselfesteem.After complet-

ing her education, the woman is better prepared to enter the job market and pursue a meaningful

career.

Many women faced with the sudden need to support themselves and their families after having

been reliant on someone else for a number of years choose not to consider returning to the school

environment because of age considerations. The predominant feeling is that it is too late in life to

think of beginning a new career or to establish new goals. A hasty review of the educational and

training opportunities available to women will rapidly dispel this misconception. In fact, many of the

programs being offered by colleges, universities and vocational schools are specifically directed

toward the older woman. These programs are available to all interested women irrespective of age.

In addition, many four year universities offer fully funded scholarships for degree candidates who

wish to apply.

An alarming number of the programs offered are underutilized and scholarships remain

unclaimed because of lack of awareness among those women who could benefit the most. In addi-

tion, not all programs are offered in the geographical area in which the most good could be provided.

This would suggest a need within the educational system for a network through which information

about the various programs being offered can be disseminated. Expansion of this concept might

include the offering of such programs by correspondence or alternatively, using current technology,

video transmission of sessions. Such a program should embrace not only local areas but should
extend state-wide and even nationwide.

In support of women who wish to establish a new career for themselves, irrespective of

motivation, encouragement should be provided even for the consideration of nontraditional fields of

endeavor typically dominated by men. Many women have the ability to perform and also excel in

such nontraditional fields but have been historically discouraged from attempting such careers and

thus have never realized their full potential. Experience has shown that women who expend the

effort and strive for excellence in such nontraditional career fields receive the full support and

encouragement of her coworkers. Women who honestly attempt to achieve in such an environment

will find that coworkers willingly remove all obstacles in her path toward task accomplishment.

For many years after moving to the United States from Korea with my husband, I remained in

the home caring for the household and rearing my children, instilling moral values, providing a role

model and attempting to develop in them self confidence and character. With the death of my

husband in 1981, 1 found myself facing the dilemma described above. I had no skills other than

those learned as a youth and young adult in Korea, skills totally unmarketable at the time and place.

Employment opportunities which were pursued included daycare attendant, restaurant work, bartend-

ing and janitorial service. None of these jobs offered financial security or held any promise for future

advancement. After a great amount of thought and soul searching, a decision was arrived at that led

me to return to school to open new career opportunities for my life.

A friend encouraged me to enroll in a Machine Technology Program offered at San Jose City

College. Being one of those career fields traditionally dominated by men, the move was taken with

more than a small amount of trepidation. Having completed a short basic course in Machine Tool
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Technology, I realized that I had identified a challenging and rewarding new career field. Armed

with a Certificate of Program Completion from San Jose City College, I set my goal on becoming a

Machine Tool Technologist and, possibly, even a Computer Numerical Control Programmer. At this

time, I learned of the De Anza/Foothill College-NASA Ames Coop Internship Program and enrolled

as a participant.

Having enrolled in the program, I found that I was receiving a tremendous amount of support and

encouragement from the program coordinator, practicing apprentices and journeyman machinists.

These people, through their encouragement, made me feel comfortable with my objectives and

instilled self confidence in my ability to achieve my goals. I was continually assured that my objec-

tives were not unreasonable and were well within my capability. I have now completed the Intern-

ship Program and am currently striving to qualify for a State Journeyman Machinist's Certificate.

The De Anza/Foothill College-NASA Ames Co-op Internship Program represents a large por-

tion of the formal education that I have received in my lifetime. My eventual goal is to obtain an

Associate Degree from De Anza College that will qualify me to pursue a career in the field of

Machine Tool Technology. Having returned to school after seeing all of my children graduate first

has demonstrated to me that the time is never too late to establish new personal goals for oneself.

I am extremely grateful that the American educational system has provided me this opportunity

to learn new skills and expand my knowledge. I earnestly hope that the various educational programs

available will be of benefit to others in the future in the same manner in which this one has provided

me with an opportunity to embark on a new and rewarding career.
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BIOGRAPHY

Kong Cha Authement:

I was born in Inchon City, Korea, in 1941. With the outbreak of the Korean conflict in the 1950s,

my family was forced to evacuate our homestead and flee in many directions. With the arrival of the

United States military, I was able to find secure employment as an attendant at the various facilities

established by the government to supply the service men and women with goods and services. In this

environment, I was able to learn the rudiments of the food preparation and serving business as well a

bar and club operation management. I was married to a noncommissioned officer doing a tour of

duty in Korea and subsequently returned with him to the United States at the conclusion of his

assignment.

I was a contented homemaker until 1981 when my husband passed away. Faced with the grim

reality of financially caring for my family of growing children after so many years with limited

skills, I sought employment in fields similar to those in which I had previously worked. I found

employment alternately as a child daycare attendant, restaurant waitress and manager, and bartender

but found no reward in such work. I then sought formal training in the field of Machine Tool Tech-

nology and am now employed as an Apprentice Machinist while pursuing an Associate of Arts

degree at De Anza College.
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THE DEVELOPMENT AND APPLICATION OF THE

SELF-ADAPTIVE GRID CODE, SAGE

Carol B. Davies

Ames Research Center

Moffett Field, California

INTRODUCTION

Solution-adaptive grid methods have become an important tool in the field of Computational

Fluid Dynamics for accurately computing flow solutions. The adaption procedures are applied to the

grid after an initial flow solution has been computed, using the solution to produce a more rational

distribution of grid points. There are two basic adaption methods: redistribution and refinement. In

redistribution schemes, points are intelligently moved to more appropriate locations; in refinement

schemes, points are added to the existing grid. In either case, solution errors are reduced by

minimizing grid discretization errors.

The approach used in the development of the Self-Adaptive Grid codE, SAGE, is based on a grid

point redistribution scheme. Gnoffo (ref. 1) first introduced a one-dimensional method (l-D) method

for the redistribution of grid points based on local flow gradients. This method is analogous to

finding the equilibrium position of a system of springs that connect adjacent nodes with spring (or

tension) forces that are proportional to the local error or weight function. This spring analogy, with

the proper choice of weight function, results in a simple system of algebraic equations. Nakahashi

and Deiwert (ref. 2) formulated an appropriate weight function that not only was proportional to

local flow gradients but also provided grid control through user-specified minimum and maximum

grid spacing, thus introducing the "self-adaptive" nature to the process. This method was extended to

two and three dimensions (ref. 3) by approximating the resulting system of equations as a series of

1-D problems. However, the associated adapted grid was not smooth between the adapted lines and

Nakahashi and Deiwert therefore introduced grid-smoothing functions which are analogous to

torsion springs. This procedure was found to be efficient and fast and it allowed the user to control

the quality of the grid while performing the solution adaption.

The user-friendly SAGE has been developed using this method (ref. 4) and applied to a wide

variety of 2- and 3-dimensional flow problems (refs. 5 and 6). The present paper describes the

development of the basic adaptive procedure as utilized by the code and the application of the code

to a variety of flow problems. Results are shown that clearly demonstrate the ability of the adaptive

grid scheme to enhance the solutions of both 2- and 3-D flows.

FORMULATION OF THE ADAPTIVE GRID SCHEME

The adaption procedure is analogous to applying tension and torsion spring forces proportional to

the local flow gradient at every grid point and finding the equilibrium position of the resulting

system. The multidimensional problem of grid adaption is split into a series of 1-D problems along

5



thecomputationalcoordinatelines.The reduced1-D problem is solved as a tridiagonal system to

find the location of grid points along a given coordinate line. Multidirectional adaption is achieved

by the sequential application of the 1-D method in each coordinate direction.

The tension forces direct the redistribution of points to the strong gradient regions. The torsion

forces relate information between the family of lines adjacent to one another, in order to maintain

smoothness and a measure of orthogonality of grid lines. These smoothness and orthogonality

constraints are direction dependent, since they relate only the coordinate lines that are being adapted

to the neighboring lines that have already been adapted. This implies that the solutions are

nonunique and depend on the order and direction of adaption.

The adaption procedure is illustrated in figure 1: three constant k planes of an initial grid are

shown in figure l(a) for which a flow-field solution has been obtained. The points in this grid are

now adapted to the computed flow solution, starting on the first line j -- 1 on the lower plane k = 1.

In figure l(b), the first plane has already been adapted and the second plane is the current adaption

plane. The current adaption line j is shown, with previous lines already adapted and subsequent lines

awaiting adaption. The third plane is still in its original form. Adaption is performed in this line-by-

line within a plane-by-plane manner until all requested planes are complete. It is then possible to

perform an adaption in a second direction, adapting "on top" of the already adapted grid. The

number and order of adaptions are arbitrary and depend on the type of flow problem and the purpose

of the adaption. However, for clarity, the analysis in this report assumes that all adaptions are

performed in the order shown in figure 1.

Figure 2 shows a segment of the current adaption line in more detail. The lower plane has already

been adapted and the upper plane is currently being adapted. Four forces control the redistribution of

(a) , (b)

f/

Ill

//
3 _1__

ill
IllJ

k I _fl',

/,//j
///,
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plane
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adaption
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Figure 1.3-D adaption. (a) Initial grid, Co) first directional adaption.
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Figure 2. Line-by-line adaption, showing tension and torsion forces.

a point along a line: the two tension springs that act on each side of a node, and the two torsion

springs that control the smoothness of the grid. The tension forces, co, have the effect of clustering

the redistributed points into the high gradient regions.The torsion forces (1; and ap) maintain

continuity between sequentially adapted lines. As shown in figure 2, the x force acts from the

previously adapted line within the current plane and the ap force acts from the previously adapted

line in the preceding plane.

The following analysis describes the development of the multi-dimensional adaption from the

simple 1-D algorithm, to the added complexities of two and three dimensions. Although the

description is segmented for clarity, SAGE is multi-dimensional and can adapt 1-, 2- and 3-D grids.

ONE-DIMENSIONAL ANALYSIS

The first step in the formulation of the adaption algorithm is to consider the adaption of a single

line where torsional constraints do not exist. This 1-D analysis and example are given to illustrate the

approach; in practice this method is used only along the initial line of a 2- or 3-D problem.

Figure 3 shows a line, where the arc length at P, (i.e. si), along the current adaption line, j, is
defined as

si + 1 = si + ASi (1)

7
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Figure 3.1-D adaption line, showing initial spacing and tension springs.

A tension force, co, is defined to act between each node such that

t-oiAsi + 1 = constant

where co i is a function based on the normalized flow gradient f, and

coi= 1.0+A f B

(2)

(3)

The constants A and B are directly related to the grid spacing and maintain the grid intervals to

within the requested minimum and maximum limits (ASMI N and ASMAX). Put simply, equation (2)

states that the larger the flow gradient, the denser the mesh spacing. This equation is written for each

node on the line, giving a 1-D formulation that can be solved directly for Asi. Taking the sum of both

sides of equation (2) gives

Asi = Smax = K _l/toi giving K = Smax/_, 1/o3i (4)

Substituting back in equation (2), we obtain

Asi=Smax/(O3i_,l/O3i)

and from equation (1), we can obtain the value of each si using an iterative procedure.

(5)

One-Dimensional Application

Example 1.1-D sine wave- Figure 4 shows a simple example of this 1-D process. The flow

function is given as a sine wave with 51 points on the initial line that are equally spaced and

displayed by the filled symbols. The user-requested spacing-control parameters, ASMAX and ASMIN,

are given to be 0.1 and 0.002 respectively (i.e., a ratio of 50/1). The 1-D adaption algorithm

intelligently redistributes the points so that clustering occurs in the high gradient regions. These

redistributed points are presented as the open symbols on the constant line in the figure.

8
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Figure 4. Adaption of a 1-D sine wave.

TWO-DIMENSIONAL ANALYSIS

The continuation of the 1-D approach for successive line-by-line adaptions does not create a

mesh that is sufficiently smooth for input into computational flow-field codes. To ensure a more

reasonable grid, the redistribution of points (driven by tension springs) is constrained by torsion

springs. Within a 2-D plane, a torsion parameter x is defined that represents the magnitude of the

torsion force that maintains smoothness and orthogonality between the node (i,j,k) and the nodes

(i,j - 1,k) and (i,j - 2,k). This torsion force is evaluated as "ri(s' i - si) where x defines the magnitude

and s' the direction (i.e., orthogonality and smoothness) of the torsion force. To introduce the torsion

forces to the system of equations, equation (2) can be rewritten to represent the force balance, i.e.,

_i(Si + 1 - Si) - 60i- 1 (Si - Si- 1) = 0 (6)

Adding the torsion term gives

o_i(si + 1 - si) - oJi_ 1 (si - si- 1) + "q(s'i - si) : 0 (7)

which can then be rearranged to give

o)i - 1 si - 1 - (_i + _i - 1 + 1;i) si + _isi + 1 = -'rs'i (8)

This equation is written for each interval along the adaption line, producing a system of n - 1

equations that can be expressed as a tridiagonal matrix.

Two-Dimensional Applications

To maintain the integrity of the adapted grid, the user has the choice of several grid quality

control variables. These include: the extent of the adaption domain; the maximum and minimum

9



meshspacings;the proportion of straightness to orthogonality of the grid lines and the magnitude of

the torsional effect. In addition, boundary spacing and grid matching controls are available to

accommodate patched, zonal and multiple grids. Finally, there is the choice of stepping direction. As

described earlier, the adaption process is a line-by-line stepping process and for 2-D applications,

there will be four choices of adaption direction: stepping in the i direction, the j direction, or both (in

either order). Each of these options will produce a different adapted grid, however there is no way to

quantify which of these will produce the "best" adapted grid. It has been shown (reL 6) that limiting

the adaption to only one direction can produce adequately adapted grids. However, for problems

with distinct two-directional flow features, experimenting with the order of adaption may be

necessary.

The following two examples of 2-D adaption demonstrate both these cases: the supersonic inlet

problem, despite the cross-flow nature of the features, is adequately adapted in one direction only.

The more complex case of an axisymmetric nozzle plume flow requires a limited adaption in the
second direction.

Example 2: Supersonic inlet- The first 2-D illustration of the adaption procedure is a super-

sonic channel flow with shock reflection and expansion features. Supersonic viscous flow through a

variable-width channel was simulated by Abrahamson (ref. 7) using the thin-layer Navier-Stokes

equations. The initial grid is shown in Figure 5(a) and the resulting density contours in Figure 5(b).

Initial clustering has been imposed in the streamwise direction at the comers of the upper wall and in

the transverse direction near the channel walls. Flow is from left to right, creating a shock from the

upstream upper wall corner that reflects off the lower wall. An expansion fan emanates from the

downstream upper wall corner and interacts with the reflected shock downstream.

The initial grid is adapted to the density flow gradients, stepping in one direction only, producing

the adapted distribution shown in figure 6(a). The adaption procedure has moved the grid points so

that the dense mesh spacing now closely follows the high gradient regions across the shocks. This

adapted grid, along with the interpolated flow variables, were re-input to the flow solver, producing a

new flow-field solution shown in figure 6(b). The improvement in the resolution of the incident and

reflected shocks is considerable when compared to the initial solution.

Ca) (b)

Figure 5.2-D flow through a supersonic inlet. (a) Initial grid, (b) density contours.
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Figure 6. 2-D supersonic inlet. (a) Adapted grid, Co) solution computed on adapted grid.

Example 3: Axisymmetric plume flow- The second 2-D example is an axisymmetric nozzle

plume flow (ref. 8). Supersonic flow exits from the nozzle on the lower left side of the grid and

interacts with the surrounding quiescent air, causing complex plume features to develop. The upper

part of figure 7(a) shows the initial grid used to compute this flow; below, in mirror image, are the

Mach contours computed using this initial grid. Because of the lack of grid points in the appropriate

regions, this solution does not clearly capture the flow features seen in the experimental results
(ref. 8).

Several iterations through the grid solver and SAGE were required to create the final adapted

grid and the significantly improved flow solution shown in figure 7(b). Two-directional adaption

was required in order to capture the Mach disk whose gradient is in the opposite direction to the

other features. The accuracy of the solution is illustrated with a comparison to experimental data: the

picture in figure 7(c) is a shadowgraph of the actual experiment and is almost mirrored by the
computed solution shown below.

THREE-DIMENSIONAL ANALYSIS

For the extension of the algorithm to three dimensions, a second torsion parameter, ap is

introduced to constrain the movement between the current node (i,j,k) and the nodes (i,j,k - 1) and

(i,j,k - 2) on adjoining computational planes. This second torsion term is defined as api(s* i - si) and is

added to equation (7). After rearrangement, the final equation becomes

_i - lSi - 1 - (o3i + t-oi- 1 +'q + xPi) si + _iSi+l = -a;s'i - aps*i (9)

In SAGE, this is the final equation that is solved for all cases. When a 2-D grid is indicated, the

ap terms are simply set to zero. The full details of the solution method can be found in reference 4.

11



(a)

(b)

°°

Figure 7. Axisymmetric plume flow. (a) Initial grid and undeveloped solution, (b) final adapted grid

and solution, (c) comparison of computed axisymmetric plume flow with experimental shadowgraph
result.

Three-Dimensional Applications

For 3-D adaption, the choice of adaption control parameters is expanded to include the direction

and magnitude of the torsion force acting between planes. However, the most difficult of the

12
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expanded choices is that of the direction, number _ind order of adaptions. With more complex flow

structures, the apparent need for two- or even three-directional adaption increases. However, even a

one-directional adaption will significantly change the grid in all three directions as demonstrated by

this first example.

Example 4: Supersonic air injection- The problem shown in figure 8 is the University of

Virginia combustor-flow experimental test (ref. 9). The figure shows a Math 2 flow over a

backward-facing step, with two sonic transverse air jets behind the step. An outline of the grid used

for this computation is shown in the figure by dotted lines. The flow data was provided by Dr. Jong

H. Wang of Rockwell International. Figure 8(b) shows three selected planes i,j,k from the initial grid

that have been separated for clarity in the remaining figures. Figure 8(c) shows the corresponding

Mach contours from the initial flowfield solution that were used as the adaption variable. Adaption

takes place on constant j planes with marching in the i direction within the plane. This implies that

the points were redistributed along k lines. Figure 8(d) shows the adapted planes, and although only

one adaption pass has been made, both the i and j planes are adapted with respect to Mach number,

with these planes retaining their original "flat" 3-D surfaces. However, the k plane shows a different

effect; points have not moved within the plane, but the 3-D surface has deformed, since points have

shifted in the k direction through the adaption.

It is also interesting to look at the effect of two-directional adaption. Figure 8(e) shows the result

of a second adaption, this time adapting in the i direction and marching in k lines, "on top" of the

adaption already shown in figure 8(d), points have been redistributed in the i direction as well as the

k direction and both the i and k planes are now curved surfaces. This i redistribution can also occur

by marching in j within the constant k planes. This alternate adapted grid (not shown) gives a very

similar redistribution on the j plane, even though that was not the adaption plane. Other combina-

tions were also tested that confirmed that the choice of adaption order may not be crucial to the

creation of an acceptable adapted grid. In addition, we have seen that both one- and two-directional

adaptions can produce an adapted grid that sufficiently represents the complex 3-D flow features.

Example 5: Supersonic flow over a 3-D swept ramp- The geometry of a 3-D ramp is shown in

figure 9(a), where the dotted lines outline the computational grid. The recompression shock at the

ramp corner and the viscous-inviscid interaction with the boundary layer results in a large separation

that is three-dimensional in nature. Solutions have been computed for two ramp angles, 15" and 30 °,

and compared to experimental oil flow patterns (ref. 10). For the 15°-ramp-angle case, the experi-

mental and the computed results agreed well. However, the results obtained for the 30 ° case, com-

puted on the initial grid shown in figure 9(b), were not as close. This is demonstrated in figure 9(c),

where the computed oil-flow patterns along the ramp surface show a significant difference in the size

of the separation zone from the experimental values (shown by the open symbols). This discrepancy

was suspected to be caused by local grid inaccuracies, which suggested utilizing the adaption proce-

dure. The adapted grid, shown in figure 9(d), was able to more accurately capture the interaction

between the shocks from the separated region and the wall boundary layer. This improved interac-

tion generated a larger separation zone than before, which is seen in the recomputed oil-flow patterns

shown in figure 9(e). This example demonstrates how a one-directional adaption pass influences the

entire 3-D flow solution. The ramp surface plane was not adapted directly, but nevertheless, the flow

on this surface changed considerably.

13
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Figure 8. Supersonic air injection model. (a) Computational grid.(b) three planes from the initial

grid, (c) mach contours on same three planes, (d) one-directional adapted grid, (e) two-directional

adapted grid.
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Figure 9. 3-D 30 ° swept ramp. (a) Experimental model, (b) initial grid, (c) oil-flow patterns,

comparing computed and experimental separation regions, (d) adapted grid, (e) oil-flow patterns
from adapted solution.
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Example 6: Hypersonic NASP nozzle-plume flow- Ideal gas solutions have been obtained

using a multiple, 3-D grid topology for the supersonic flow around a generic National Aero-Space

Plane (NASP) nozzle configuration known as the single exhaust ramp nozzle (SERN) (ref. 11). The

3-D model is shown in figure 10 along with an outline of the computational zone in the plume

region. This grid is one of the eight separate overlapping grids that were required to model this prob-

lem and this example demonstrates the flexibility of using SAGE for adapting segments of multiple

grids. Figure 1 l(a) shows three planes (the symmetry plane, the outflow plane and the plane contain-

ing the ramp surface) from the original grid that covered the plume region. Figure 1 l(b) shows the

Mach contours from the flow-field solutions obtained on this grid (ref. 11). It is clear that the inter-

action of the plume shocks with the ramp and the edge flow is complex and three-dimensional in

nature. Although most of the flow features were observed, they were not all well-defined and thus

the adaption procedure was invoked. The initial grid was adapted in two stages: first the points were

redistributed in two directions, based on Mach number; then points were moved from the outer,

constant region to the more complex interior flow region.

The resulting adapted grid is shown in figure 11(c). The inflow plane (not shown) and the lower

ramp plane were not adapted, to maintain continuity between this grid and the unadapted grids

surrounding it. Smoothness between the nonadapted planes and the internal adapted planes was

maintained by the merging process described in reference 4. The flow solver used this adapted grid

to obtain the result shown in figure 1 l(d). It can be seen that the flow features have sharpened

considerably. Figure 12 compares the experimental shadowgraph (ref. 12) to the computed Mach

contours along the symmetry plane downstream of the nozzle exit. The external and internal plume

shocks are captured well and the agreement between the computation and the experiment is seen to

be good.

Outflow plane
Sym/_t ry plane

Figure 10. SERN experimental model showing computational grid in plume region.
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Figure 11. Nozzle plume flow. (a) Initial grid showing symmetry plane, outflow plane, and ramp

surface, (b) initial Mach contours, (c) adapted grid, (d) adapted Mach contours.

Figure 12. Comparison along the symmetry plane of the SERN nozzle flow. (a) Experimental

shadowgraph, (b) computed Mach contours.
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CONCLUSIONS

The multidimensional self-adaptive grid code, SAGE, has proven to be a flexible and useful tool

in the solution of complex flow problems. Both 2- and 3-D examples given in this report show the

code to be reliable and to substantially improve flowfield solutions. Since the adaptive procedure is a

marching scheme the code is extremely fast and uses insignificant CPU time compared to the corre-

sponding flow solver. The SAGE program is also machine and flow solver independent. Significant

effort was made to simplify user interaction, though some parameters still need to be chosen with

care. It is also difficult to tell when the adaption process has provided its best possible solution. This

is particularly true if no experimental data are available or if there is a lack of theoretical understand-

ing of the flow. Another difficulty occurs if local features are important but missing in the original

grid; the adaption to this solution will not result in any improvement, and only grid refinement can

result in an improved solution. These are complex issues that need to be explored within the context

of each specific problem.
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SUMMARY

The number of students enrolled in engineering is declining while the need for engineers is

increasing. One contributing factor is that most high school students have little or no knowledge

about what engineering is, or what engineers do.

To teach young students about engineering, engineers need good tools. This paper presents a

course of study developed and used by the authors in a junior college course for high school

students. Students learned about engineering through independent student projects, in-class problem

solving, and use of career information resources.

Selected activities from the course can be adapted to teach students about engineering in other

settings. Among the most successful techniques were the student research paper assignment, working

out a solution to an engineering problem as a class exercise, and the use of technical materials to

illustrate engineering concepts and demonstrate "tools of the trade."

_TRODUCTION

The United States is facing a serious threat to our economic, social, and environmental well-

being. Problems include a fiercely competitive global economy, energy shortages, depletion of

natural resources, degradation of the environment, and deterioration of infrastructure, all complicated

by shrinking federal budgets. Because these problems have substantial technical components,

engineers are well qualified to contribute significantly to their solutions. Although some see the

present employment market for engineers as weak, we believe that this country's future depends on

engineering talent in all disciplines to provide cost effective, innovative, and permanent solutions to

these interdisciplinary, national problems.

Future engineers are students attending elementary and high schools today. The number of high

school graduates enrolling in undergraduate engineering programs, however, is declining. At the

university level nationwide, the number of new college freshmen enrolling in engineering programs
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declined,with acorrespondingdeclinein thenumberof Bachelorof Sciencedegreesin engineering
awarded,from almost80,000in 1986to 66,000in 1990.

Therearemanywaysto encouragemoreyoungpeopleto chooseengineeringasacareer.
Engineering Careers, the course described in this paper, was developed as one means to do so.

Figure 1 illustrates some complementary ways in which a growing number of programs today,

including Engineering Careers, are contributing to an overall solution to our national dilemma.

Some of these programs help to inspire young people to pursue scientific and technical study by

drawing on the very powerful images provided by space exploration. The use of such imagery to

inspire students to pursue technical careers is an excellent technique. Inspiration alone, however, is

not sufficient. We also need to inform students about engineering. Many students face the difficulty

of deciding what career to choose without the benefit of some very basic information about

engineering.

National Coalition of

Engineering Societies for
Math and Science Education

INSPIRE
Students to pursue

technical careers

MORE
and

BETTER
ENGINEERS

INFORM
Students about

engineering
careers

IMPROVE College engineering
curricula to attract,
and train good students

Nati( _'_.\°_
Educatio_ CO_,"

Figure 1. Engineering Careers and other programs target students in complementary ways along the

path to producing more and better engineers.
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The authors have twice taught an engineering careers course to high school students in

California's "Silicon Valley." Nearly every student gave as the reason they took the course: "I might

be interested in being an engineer...but first I want to find out what engineering is all about."

Because our Silicon Valley students (many of whom had an engineer parent) lacked this information,

we suggest that high school students in less technology-oriented areas in this country are even less

able to make an informed decision to choose a career in engineering. •

Across the country, engineers can balance the intangibility of "inspiration" with the substance of

"information." Engineers can teach--uniquely'-what engineering is and who engineers are. Today's

engineers need good tools to inspire and inform tomorrow's engineers. This paper describes the tools

the authors used in a self-contained, integrated course of study that we developed and taught in a

junior college program for high school students.

LEARNING ABOUT ENGINEERING

Engineering Careers at Foothill College

Engineering Careers, the course described in this paper, is part of the Foothill Summer Youth

Programs. These programs provide 8th through 12th grade students with academic challenge in a

college environment; all classes offered in the Summer Youth Programs are part of the college

curriculum and supply college credit. A proposal for a course entitled Engineering Careers was

developed by M.A. Farrance and accepted by Program Director Janice Carr in 1989. In the summers

of 1990 and 1991, Foothill College offered the course as part of the Space Sciences Youth Program,

co-sponsored by the Mathematics and Applied Science Department, and taught by Farrance. Both

authors have worked on course improvements. We expect to offer the course again in 1992. The

course syllabus is shown in figure 2.

Engineering Careers is a 12-hour course offered for one college quarter unit of credit. In 1990

the class met twice a week in two-hour sessions for three weeks; in 1991 we changed to four one-

hour sessions each week for three weeks. Class size and grade levels of students are shown in

figure 3.

Course objective(s)- Objectives for the course are stated in terms of what we expected students

to accomplish. They were told that by the end of the course, they would be able to:

1. identify a variety of engineering career disciplines;

2. identify what kinds of work can be performed by engineers in different disciplines;

. understand by example how engineers typically approach physical engineering problems (that is,

by setting up a problem model and using algebra, trigonometry, calculus and physics as tools for

problem solution);

4. identify some college course work necessary to obtain an engineering degree;
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Session
1

10

11

12

Topics Covered
Introduction

"A job" vs "a career"
Making career choices; the significance of doing work

that one enjoys
"Engineering" and "science"

Engineering disciplines
Engineering functions
Vldeo: "Turning Ideas Into Reellty ''4
Confirm research paper topics

Engineering Disciplines
Where engineers work

Guest speaker

Problem solving in engineering
The engineer's toolbox

Vldeo: "Techniques for Visualizing Flight Dynamics ''5

Problem solving in engineering

Guest speaker or field trip

Academic preparatlon for an engineering career
The Professional Engineer
The entrepreneurial engineer

Guest speaker

The engineering roles of the technical team
The future of engineering
Vldee: "Journey into Tomorrow "9

Guest speaker

Engineering a science satellite system
Video: "Fast Forward to the Future ''10

Engineering Careers

Assignment

Complete Strong Interest Inventory 2

Read "Proud to be an Engineer '_3

Deadline to return Strong Interest Inventory

Deadline to return orientation completions

Read "Earning the Title of "Professional Engineer ''5

Read ''The Coming Crisis in Aerospace Employment? ''7

and "The Interdisciplinary Team ''8

Deadline to turn in research papers and book reports

2Strong, E.K., Jr.; Hansen, J.C.; and Campbell, D.P., Strong Interestlnventory, 1991.

3Gardner, Dana, Design News Magazine, 11 June 1990.

4National Engineers Week DiscoverE, 1991.
5NASA Ames Research Center, 1989.

6jenner, J.W., and Farrancs, M.A., 1991.

7Supplement to Aerospace Engineering Magazine, January 1990.

8jenner, J.W., and Farrancs, M.A., 1991.

9Lockheed Missiles and Space Company, 1990.

10NASA Ames Research Center, 1990.

Figure 2. Engineering Careers course syllabus.

5. understand that different engineering disciplines work together in engineering projects; and

6. use newly acquired research skills to learn about any career choice that might interest them.

Students were evaluated for a grade based on their independent research papers, book reports,

class attendance, and class participation. The instructor determined if the students met the course
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Figure 3. Engineering Careers class composition.

boys

objectives by evaluating their papers and reports, in-class question-and-answer sessions, class

discussions, and individual student interviews. We intentionally structured the class to avoid

requiring students to memorize information that is easily available in references.

Criteria for success-- Our criteria to determine the success of the course were the following.

1. More than 15 students would sign up for the course;

2. At least 90% of students would indicate an increased awareness of what engineering is, and what

engineers do, at the conclusion of the course;

3. At least one student would indicate an interest in pursuing an engineering career after the class;

4. More than one-half of the students would indicate a willingness to recommend this course to

their peers.

Tools for Teaching/Means for Learning

Students learned about engineering through lectures, reading materials, video, in-class activities,

and independent assignments, described below.

Lectures/reading materials/video- The instructor presented lectures, some with supplemental

reading assignments and videos, on topics as shown in figure 2.

The instructor used videotapes to stimulate class discussions about how the engineers featured

represented their profession in various disciplines. Another short, technical tape was used with a

lecture about "the engineer's toolbox" to illustrate how computer-generated graphics can be used by
engineers.
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In-classactivities- There were two types of in-class group activities. The first was designed for

self-discovery. The second provided a glimpse of how engineers use math and physical science to

solve real-world problems, that is, "what engineers do."

Self.discovery exercises: One self-discovery exercise was used to help students place

"education" and "work" into the context of their projected lifetimes. "This is Your Lifeline" was

used to represent students' lifetimes graphically on a timeline (fig. 4). After students completed their

individual lifelines, the class discussed the relationship between education and employment options,

how fast technology changes, and how technology changes might affect the need for continuing

education. We particularly stressed the significance of how much of the lifeline graph was filled by

working years. A typical person is likely to spend 30 years--or morewworking. This was compared

with the 17 years that one might ultimately spend in school before earning a bachelor's degree. This

comparison proved to be especially meaningful to students, who have already spent the majority of

their years in school, some of whom expressed feeling "as if it will never end!" In that context, the

importance of spending 30 years doing things that one enjoys becomes significant.

The authors feel strongly that self-knowledge is a prerequisite for a sound career choice. The

Strong Interest Inventory was used to help students learn more about their own interests, and to

compare their individual patterns of likes and dislikes to those of a wide variety of working adults.

An in-class discussion about the individual results of the Strong Interest Inventory gave students an

opportunity to discuss some possible reasons behind some of the correlations to professionals'

profiles, and interpret their results in the context of career planning.

10 20 30 40 50

I L I
II I I ' 'Girl went to college got married, kids start

1976 II elementary, middle,' I had two children, college
and high school worked as engineer

60 70 80 90

I L
retired, buy a sailboat

100

Figure 4. "This is Your Lifeline" student graph.

Engineering exercises: To learn about the use of mathematics and physical science as

engineering tools, the class worked out a solution to a problem based on one posed by Smith, Butler,

and LeBold, shown in figure 5. All students were unfamiliar with one or more of the techniques

demonstrated. As each new element of the problem was introduced, the instructor explained the

basic math and physics principles behind it. Students who had already learned the algebra,

trigonometry, or physics were called on to help explain how each was being applied.

Independent assignments- Independent assignments helped students learn about various

aspects of engineering and gave them a chance to practice written communication skills that

engineers use in their work environments. The importance of communication in engineering was

heavily stressed.

These assignments included a research paper about an engineering discipline (see fig. 6), and two

letters of inquiry. Each student sent one inquiry to a university offering an appropriate engineering

degree, and the other to a company or agency that employs engineers in the discipline selected.

26



L

PROBLEM (Part 1): The potential for expensive damage caused by runaway trucks on a
particular long, steep downgrade is high. What is a simple and effective way to minimize damage
that might be caused by runaway trucks?

POSSIBLE SOLUTIONS: design new trucks
(suggested by design new brakes
students) redesign highway slope

put canter divider in road
*put in up-ramp next to highway

PROBLEM (Part 2): How long does the up-ramp have to be so that the speeding truck will roll to
a stop?

ASSUMPTIONS

15% grade = 8.5 deg
gravel-covered, coefficient of friction for gravel : 0.20
initial velocity of truck = 100 m/hr

Figure 5. To solve this basic physical engineering problem, the students learned to apply some

universal techniques of engineering problem-solving, such as drawing free-body diagrams, making

assumptions, calculating forces, and checking solutions.

A report on a book about engineering was also assigned. Students selected a book from the

course bibliography (fig. 7).

To assist them with their research, students were introduced to the Foothill College Library and

the Career Center through required individual orientations with the reference librarians. These
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Engineering Careers

TOPIC OF PAPER

Name the engineering discipline or field you have chosen.

DESCRIPTION OF FIEL_I )

Describe this field of engineering. What does it include? Are there specializations within this field of
engineering? What kind of work do people in this field do? Describe the kinds of products these engineers
preduee in the various specializations.

EDUCATION

Whet education is required for a degree in this field? How meny years of college does it usuelly take to get
the appropriate degree? Give two required technical courses needed for a degree in this major. Describe what
these courses are meant to teach. Why do you think they are required? What high school classes are helpful for
preparing for college course in this major? Name two colleges or universities that offer a degree in this field.

EMPLOYMENT

For what kinds of companies, government agencies, or institutions are people in this field likely to work?
Name two companies, agencies, and institutions that might hire an engineer who has just graduated with s
degree in this field.

PROFESSIONAL DEVELOPMENT

Find an article from a journal or periodical publication that might be of interest to this type of professional
engineer. Give its title, author, name of the publication, and date of issue. Explain why a professional engineer
might find this article Interesting. Include a copy of the article with your paper.

PERSONNEL OBSERVATIONS

Does this field appeal to you as a career choice, or not? If yes, why is it interesting? If no, what do you find
unappealing, and what field would you research next? How does this field match with the results of your interest
inventory? Does the interest inventory indicate that you might like working in this field? Why, or why not?

REFERENCES

Use the Foothill College Semans Library, Career Center, and any other resource you want. List the sources of
your information (books, encyclopedias, periodicals, college catalogues, Eureka database, etc.)

Figure 6. Research paper outline.

The Civilized Engineer, Florman, Samuel; St. Martin's Press, 1987
Structures, or Why Things Don't Fall Down, Gordon, J.E.; Plenum Press, 1978
Freedom to Soar, Kimball, J.B.; Kimball Publishing, 1989
Ethics and Professionalism in Engineering, Mantell, M.I.; MacMillan, 1964
Psychology of Everyday Thlngs, Norman, D.A.; Basic Books, 1988
Beyond Engineering, Petroski, Henry; SL Martin's Press, 1986
Women in Engineering, Posner, Alice; Career Horizons, 1981
Engineering as a Career, Smith, R.J., McGraw Hill, 1983
The Encyclopedia of How It's Built, Clarke, D., A&W Publishers, 1979

Figure 7. Engineering Careers course bibliography.

assignments gave them practice in using research resources: the on-line catalogue, the reserve

l_brary, college and university catalogues, newspaper want ads, the periodicals index, and the Eureka

careers information database.

Guest speakers - We invited engineers from the local area to talk to the class. We made a

deliberate effort not only to have the speakers represent a variety of engineering disciplines, but also
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to introducestudentsto enthusiastic,articulateengineersof bothsexes,with variedbackgrounds.To
increasethechancesof a successfulinteractionwith thestudents,boththeguestspeakersandthe
studentswerepreparedin advanceby theinstructor.Studentswereremindedthatpartof their class
gradewasbasedon "classparticipation,"includinginteractionwith theguests,andsomeclasstime
wasspentbeforespeakers'visits to generatesomequestionsto askeachof them.Guestspeakers
wereprovidedwith someorientationmaterialsuppliedby theinstructor.A sampleis shownin
figure 8.

Engineering Careers

Try to include the following information in your presentation:

What is your job? (Tell them your title, but also tell them what you do.)
Describe a typical day.
What kinds of tools do you use in your work?
Why did you choose engineering/your particular discipline?
Do you belong to any professional societies?
Will you stay in engineering, or are you considering a change?
What do you like best about your job? What do you like least?
Where did you go to school? How did you pick that school?
How did you get your first job?
How long have your been working?
How many different jobs have you worked at? How many different companies?

Be prepared to answer the folowing question. Students almost always ask:

How much money do you make?

The best answer to this question is not necessarily a number, but rather a relative assessment of
how your salary affects your standard of living. Is your salary enough for you to afford a house?
Pay for leisure activities? Not as large as your friend's, who is a doctor/lawyer/computer
programmer? Larger than another friend's, who is a travel agent?

Please use visual aids: overhead transparencies, videotapes, pictures, show-n-tell hardware, printouts,
drawings, etc.

Encourage questions. Ask questions of them, and listen to their responses.

Use personal anecdotes. Have at least one good story ready.

Figure 8. Suggestions made to guest speakers.

CONCLUSIONS

Meeting the Success Criteria

We obtained student feedback from a course evaluation (fig. 9) and student interviews. From this
information we determined that this course had met our success criteria.

1. We had 25 students in 1990 and 17 students in 1991 complete the course;

2. 100% of students indicated an increased awareness of what engineering is and what engineers do

at the conclusion of the course;
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Was this a worthwhile course for you? Why or why not?

Was the level of work required appropriate?

too much about right

Was the lecture and class material appropriate?

too much detail about right

Was the number of guest speakers appropriate?

too many about right

Was the variety of guest speakers appropriate?

too many about right

What did you like BEST about the course?

What did you like LEAST about the course?

Engineering Careers

too little

not enough detail

notenough

not enough

I would like to improve this course. What do you recommend that I do to make it better?

Would you recommend this course to a friend? Why or why not?

Figure 9. Course evaluation form.

. 44% of students indicated that the course helped them decide to pursue an engineering career

(one former student is currently working as an intern at NASA Ames Research Center and plans

to major in engineering next year);

4. 88% of students (100% of the students who answered this question) indicated a willingness to

recommend this course to their peers.

Additional student feedback about the course is given in figure 10. We are making improvements to

the course based on both feedback from students and our own observations.

What Worked

From the student's point of view- The activities that students liked most were those that

required student involvement, in particular, the self-discovery exercises and the engineering

problem. Frequently mentioned were the guest speakers. Guest speakers who brought items for

show-and-tell had good student involvement. (See fig. 11 .)

No student actually claimed to have liked doing the book report, but several students reported

that they had read a book they would not have found or read otherwise, and enjoyed it. Most books

met with the students' approval. The Civilized Engineer, by Samuel Florman, was the most popular.
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'_l'he guest speakers gave us a good idea about what engineers do."

"1 probably wouldn't have done as much research and reading about [engineering] as I've done here."

'1"his course let me learn more about the different career choices in engineering."

"1 would recommend this course because it helps a person have a better perspective on whether he/she
wants to become an engineer."

"[This course] helped me make up my mind to go into software engineering."

"Now I have a batter idea of what the different types of engineers do so I can better decide what area I
want to major in."

"[This course] showed me what kinds of careers there are, and what i might be good at."

'_l'his class was very worthwhile, even to get up at 6:30 for. It helped me decide what I want to major in
once I go to college."

"[This class] really taught me a lot about engineering. I learned more than I ever could back at high
school, it really broadened my horizons. I think rye finally decided what I'm going to do with my life:
become an aerospace engineer!"

"1 learned what I wanted to and I know about the fields of engineering now. rm seriously considering a
career in engineering."

Figure 10. Student evaluation results.

From the instructor's point of view- The learning value of the engineering exercise was not

what problem we worked, but how we worked through it. The explanations of each element of the

problem helped illustrate how engineers approach problem-solving.

The judicious use of selected technical materials such as videotapes and drawings was found to

be highly effective for teaching. The access to such material, along with the ability to explain in

basic terms what it is and how it's used, is unique to the engineer-as-teacher.

Student orientations with the library and career center worked well. This requirement was added

in the second year of the course, because many students in the first course did not take advantage of
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Figure 1 1. Students particularly enjoyed guest speakers who brought items for “show-and-tell” and 
encouraged student involvement. 

these resources when they were not required. The cooperation of the librarians at Foothill College 
reminded us that librarians in general are happy to help people learn to use resources and need only 
to be asked. 

We found that the value of the self-discovery exercise is primarily in the discussion about the 
results. The Strong Interest Inventory is not the only self-discovery exercise appropriate for high 
school students; others are available or can be developed. Our first year students completed a 
different inventory based on an exercise from SPACES. 

What Didn’t Work-Room for Improvement 

The student’s inquiry letters to companies that employ engineers did not always produce a 
satisfactory response; many replies were form letters. Student evaluations indicated that straight 
lectures (those without student reading preparation or exercises) were uninteresting and did not 
involve them enough. 

Recommendations 

Engineering Careers 1992 

We are making the following changes to the course, consistent with suggestions by students. 

1. Develop more written material for student reading assignments, especially 011 engineering 
disciplines and functions, and shorten lectures. 
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+ Add at least one class engineering project as an extension of the problem solving exercise. For

example, in the case of the truck-ramp exercise, the class might test their chalkboard solution by

rolling vehicles down a ramp of the same slope as the hill in the problem and determining (after

scaling the distances) how far up the second ramp the vehicle will travel after it has accelerated
clown the "hill."

3. Increase class duration to six weeks (a total of 24 hours of class time) to allow time for in-class

engineering projects.

4. Retain the one-hour-session format. Students and instructor both found the shorter sessions easier

for their attention spans.

, Add options from which to choose for a second project. We hope to provide students with more

opportunity for communication practice. Options will include book reports and presentations to

the class on some engineering topics.

6. Send the inquiry letters early and have students bring in the replies to share with the class.

Adapting Engineering Careers to Other Settings

Based on our own observations and feedback from students who have taken Engineering

Careers, this course appealed to a range of ages, from 8th to 12th grade level. That is, it was not too

difficult for the youngest class members nor too simplistic for the older class members. Eighty-eight

percent of the student evaluations indicated "I would recommend this course to a friend." Our plan is

to continue to offer the course through Foothill College, and we would also like to encourage others

to use what has worked for us. We feel, however, that this course is appropriate for students who are

already interested in math, science, and technical subjects. Without major changes, it is not likely to

appeal to "at risk" students who are already uninterested in school, or with students below an

8th grade level.

Engineering Careers might be used in slightly modified form for programs in which students

meet regularly and explore an interest in science and technology, such as Young Astronauts or

Scouts. It might also be adapted to a regular high school class setting with a well-motivated class,

such as an honors course in physics.

Individual exercises from Engineering Careers can be used in other contexts. The chalkboard

engineering exercise might be used to illustrate engineering problem-solving techniques, but we

emphasize that this exercise should be reinforced with hands-on activity. The independent assign-

ments can be used in almost any setting where students meet at least twice and can earn some type of

reward for their effort (such as a grade, a merit badge, or an award).

Finally, our techniques for preparing both students and guest speakers have provided good

results. We encourage teachers to invite engineers into their classes, and we encourage fellow

engineers---especially women and minority engineers--to volunteer to speak to students. Engineers

who both inspire and inform young people about engineering literally are helping to "engineer the
future."
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INTRODUCTION

A fast-growing movement in the scientific community is reshaping the way that we view the
world around us. The short-hand name for this movement is "chaos." Chaos is a science of the

global, nonlinear nature of systems. The center of this set of ideas is that simple, deterministic sys-

tems can breed complexity. Systems as complex as the human body, ecology, the mind or a human

society. While it is true that simple laws can breed complexity, the other side is that complex

systems can breed order. It is the latter that I will focus on in this paper.

In the past, nonlinear was nearly synonymous with nonsolvable because no general analytic

solutions exist. Mathematically, an essential difference exists between linear and nonlinear systems.

For linear systems, you just break up the complicated system into many simple pieces and patch

together the separated solutions for each piece to form a solution to the full problem. In contrast,

solutions to a nonlinear system cannot be added to form a new solution. The system must be treated

in its full complexity.

While it is true that no general analytical approach exists for reducing a complex system such as

a society, it can be modeled. The technique involves a mathematical construct called phase space. In

this space stable structures can appear which I use as analogies for the stable structures that appear in

a complex system such as an ecology, the mind or a society. The common denominator in all of

these systems is that they rely on a process called feedback loops. Feedback loops link the micro-

scopic (individual) parts to the macroscopic (global) parts. The key, then, in shaping a space society,

is in effectively using feedback loops. This paper will illustrate how one can model a space society

by using methods that chaoticists have developed over the last hundred years. And I will show that

common threads exist in the modeling of biological, economical, philosophical and sociological

systems.

PHASE SPACE VISUALIZATION OF DYNAMICAL SYSTEMS

In nonlinear science, modeling is performed on what are called "dynamical systems." This is a

physical system that evolves in time according to well-defined rules. It is characterized by the rate of

change of its variables as a function of the values of the variables at that time. Examples are

Maxwell's equations, the Navier-Stokes equations, and Newton's equations of motion for a particle

with suitably specified forces. Modeling of dynamical systems are done in "phase space." This

mathematical space that has position (x) as one axis and velocity (v) as the other axis. However,

sometimes scientists represent the phase space with just the spatial coordinates of the system to

better visualize the dynamics. Each point in this space represents the complete behavior of the
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system. For example, the position and velocity of a pendulum with one degree of freedom at any

instant in time is in a two dimensional phase space. Notice that if we have a more complicated

system the number of dimensions of the phase space is enormous. The reason being that the space is

constructed by assigning coordinates to every independent variable (every degree of freedom

requires 2 more dimensions in phase space). In fact, the dimension is taken to be infinite in the

general hydrodynamic description.

Since all of the information about a system is stored in a point at one instant in time, the evolu-

tion of a system can be charted by the moving point tracing its path through phase space. The time

evolution is often called a "trajectory" or an "orbit." The set of orbits originating from all possible

initial conditions generates a "flow" in this space governed by a set of 2n first-order coupled

differential equations:

dx---J-i=F(Xl,X2 ..... Xn;Vl,V 2 ..... Vn) , i=l .... n
dt

dv i
--a_-= F(Xl,X2,...,Xn;Vl,V2,...,Vn), i = 1,...n

where n is the number of degrees of freedom and F is the rate of change in position and velocity.

This change is added to the previous values of the position and velocity to get a new x, v point in

phase space, i.e.:

xt+ 1 = x t + F(Xl,X 2 ..... Xn;Vl,V 2 ..... v n)

for position and

vt+ 1 = v t + F(Xl,X2,...,Xn;Vl,V2 ..... v n )

for velocity, where t represents a particular time.

One advantage of thinking of states as points in space is that it makes change easier to watch. If

some combination of variables never occur, then a scientist can simply imagine that that part of

space is out of bounds. If a system behaves periodically, then the point will move around in a loop,

passing through the same position in phase space again and again. The motion of a point in phase

space must always be non-self-intersecting. This arises from the fact that a point in phase space

representing the state of a system encodes all of the information about the system, including its

future history, so that there cannot be two different pathways leading out of one and the same point.

Since scientists are usually interested in the long-term behavior of dynamical systems, what will

be the nature of the motion after all of the short-lived motions have died out? For dynamical systems

with friction or some other form of dissipation (i.e., a nonconservative system), the system will even-

tually approach a restricted region of the phase space called an attractor. This is the solution set of

the dynamical system. If we know the structure of the attractor, then we can sensibly claim that we

know all the important things about the solution of our differential equation.

38



WHAT IS AN ATTRACTOR?

As the name implies, nearby initial conditions are "attracted;" the set of points that are attracted

form the basin of attraction. A dynamical system can have more than one attractor, each with its

own basin, in which case different initial conditions lead to different types of long-term behavior.

The region in the 2n -dimensional phase space occupied by the attractor, its "volume," is, in general,

very small relative to the amount of phase space.

The simplest attractor in phase space is a fixed point. Figure 1 shows the damped harmonic

oscillator (Shaw, 1981):

Y

(
k.

Figure 1. Damped harmonic oscillator. The equations describing motion are:

dx dy
d-i- = -y, --d-_-= x- y

With fixed points, motion in phase space eventually stops; the system is attracted toward one point

and stays there. Regardless of its initial position, the pendulum will eventually come to rest in a

vertical position. Similarly, if a glass of water is shaken and then placed on a table, the water even-

tually approaches a state of uniform rest as its solution set. This is true despite the fact that the

water's phase space is initially virtually infinite in dimension.

Another example of an attractor is a periodic cycle called a limit cycle. Limit cycles represent a

spontaneous sustained motion that is not often explicitly present in the equations describing the

dynamical system. One example where this happens is the predator-prey system used in ecological

models (Prigogine, 1980):

dX
di- = klAX - k2XY

dY
= k2XY - k3Y

The variable X represents a prey population that uses product A, Y represents a predator population

that propagates at the expense of the prey, and ki are constants. This relationship is usually referred
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to the"Lotka-Volterra" equations.In phasespacethis systemyieldsan infinite varietyof closecon-
centricorbits,asseenin figure 2. Thedifferentorbits,or periodictrajectories,correspondto different
initial conditionsandarisefrom thedynamicsof thepredatorandprey reducingeachother's
populationscontinuously.
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Figure 2. Periodic (Limit) cycle solutions of the Lotka-Volterra system for different initial conditions

(Prigogine, 1980).

STRANGE ATTRACTORS AND CHAOTIC BEHAVIOR

In dissipative systems, one can find attractors such as the two examples just mentioned (fixed

and periodic). However, one can also find a strange attractor. The two examples just cited are oscil-

lating systems without any forcing. When a forcing oscillator is added to the system, one has more

dimensions in the phase space and the orbits converge to an object that is neither a fixed point nor a

limit cycle. It is a strange attractor. Figure 3 is an example. This strange attractor depicts the chaotic

behavior of a rotor, a pendulum swinging through a full circle, driven by an energetic kick at regular
intervals.

A trajectory on a strange attractor exhibits most of the properties intuitively associated with

random functions, although no randomness is ever explicitly added. The equations of motion are

purely deterministic; the random behavior emerges spontaneously from the nonlinear system. This is

often referred to as "deterministic chaos." Over short times it is possible to follow the trajectory of
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Figure 3. Snapshots in time of the Rotor strange attractor (Gleick, 1987).

each point, but over longer periods small differences in position are greatly amplified, so predictions

of long-term behavior are impossible.

BIFURCATIONS AND FEEDBACK LOOPS

I've now introduced phase space, attractors, strange attractors, and chaos. I will tie these ideas

with what I call "emergent order" in this section.

In many dynamic systems there will be an instant in time when something as small as a slight

fluctuation in density or a slight rise in temperature will be amplified by the iteration function F to a

size so great that the system takes off in a new direction. This behavior is called a bifurcation, and it

is the beginning of a qualitatively different solution of the underlying mathematical model. There are

different types of bifurcations. In addition, bifurcations can combine with each other to produce a

new state (steady, periodic, quasi-periodic, or chaotic) of the dynamic system. Figure 4 diagrams

bifurcations. This figure was derived using a relationship for population growth called the "logistic

map," which was first investigated by P. F. Verhulst in 1845. The Verhulst relationship is:

Xn+ 1 = kXn(1- Xn)

where X represents the size of population, and k is a constant called the birthrate. As k increases, the

system undergoes a bifurcation where there are two possible outcomes for population size and, there-

fore, the system periodically oscillates between them. When the birthrate increases again, we have

four, eight, sixteen different population sizes. Finally, when k increases again, the total population

size becomes chaotic. The chaotic zones are the dark regions filled with points. The bands of white

are windows of stability where the system becomes stable and predictable again.
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Figure 4. A model describing population growth called the Logistic Map (Stewart, 1989).

Over the course of time cascades of bifurcation points either cause the system to fragment itself,

in what is called "period doubling toward chaos," or it causes the system to stabilize a new behavior

through a series of feedback loops. How are bifurcations and feedback loops related in a nonlinear
model such as the one above?

To see how feedback loops are related, we can separate the Verhulst equation into two terms:

kxn and (1-Xn). View the first as a "stretching" term and the other as a "folding" term. A property

specific to all dissipative systems is that the volume of any set of initial conditions in phase space

diminishes on the average in time. Chaoticists express this property by saying that "the flow con-

tracts volumes in phase space." The folding term is the reason for this property in the above

nonlinear system. The folding term is our feedback loop.

The net result of bifurcations and feedback loops in a nonlinear and dissipative system is a

process that links microscopic behavior with macroscopic behavior into an unpredictable, often

symmetrical, beautiful form that can be characterized in phase space by a strange attractor. Strange

attractors exhibit fractal microstructure. The most beautiful aspect of fractals is a quality of self-

similarity which means that any section of the fractal, when blown up, reveals itself to be just as

exquisitely detailed as was the larger picture from which it was taken.

Philosophically, this process means that we have a world that is interconnected, unpredictable,

but with a subtle order present. Even what appears on the surface as disorder contains a high degree

of implicit correlation. Sometimes this below-the-surface correlation can be triggered and it emerges

to shape the system. I call this correlation emergent order. The following are some common ideas

that I've noticed in systems exhibiting emergent order.
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COMMON THREADS IN SELF-ORGANIZED SYSTEMS

Self-organization operates on a wide range of levels. The three that I find most obvious are

Minds, Ecologies/Evolution, and Free Markets. Common threads that run through all three are:

1) The order that emerges is unplanned and unpredictable.

2) Millions of things are operating under a simple set of rules while also operating in unique
local conditions.

3) The rules evolve.

4) The individuals involved don't have to have knowledge or understanding of the whole system.

5) The systems regulate themselves by feedback loops.

6) The systems are as much processes as they are systems because they are continuously adapting

to the fluctuations produced by the environment and as a result, matter/life/information is created

and destroyed.

7) The systems are irreversible.

8) Intervention and attempts to control the systems will fail.

SOCIAL AND ECONOMIC EVOLUTION

Since emergent order is unpredictable and unplanned, the best we can hope for in designing a

society of productive people is to create relevant elements let the elements interact. If we try to con-

trol the detailed workings of these systems, we will interfere with its own logic and obstruct its self-

ordering, rather than intelligently guiding it (Lavoie, 1989). What elements can we create?

The elements we can create are rules. These rules coordinate cooperation and agreement between

unknown individuals (or companies) pursuing unknown purposes. Voluntary consent between the

individuals is imperative (DiZerega, 1989). All participants within the system are equal in relation-

ship to the rules. New rules may arise out of the self-organizing process in response to changes in the

environment. The rules must be general and abstract and therefore, the particular details must be left

to the individuals. (Hayek, 1975). Some rules could be the rules of property, the rules of contract,

and the rules of law. In addition, the individuals could agree to certain rules of morals and rules of

social convention. In a society based on division of labor and exchange, all individuals work to earn

an income. So another rule could be that one's productivity (and hence their income) increases if
one's effort increases.

The following are two social simulations with a resulting emergent order. Both simulations use

very simple rules.
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EXAMPLE 1- EVOLUTION OF COOPERATION

In the early 1980's Robert Axelrod asked himself the question: Under what conditions will coop-

eration emerge in a world of egoists without central authority? In other words, in situations where

each individual has an incentive to be selfish, how can cooperation ever develop (Barlow, 1991)? He

framed this in a game that he called the "Prisoner's Dilemma." The game is that two accomplices to

a crime are arrested and questioned separately. Either can renege against the other by confessing and

hoping for a lighter sentence. However, if both confess, their confessions are not as valuable. If, on

the other hand, both cooperate with each other by refusing to confess, then the district attorney can

only convict them on a minor charge. In a collective sense it would be best for both of them to coop-
erate with each other. But if one has no conscience at all toward the other, and he confesses while the

other one does not, then he still wins.

This game was quantified in a computer simulation and studied with methods of game theory.

The problem was extended to apply to the same situation in sequential rounds so points were accu-

mulated for each round. A computer tournament was staged in which participants sent in entries of

their best strategies. The winning strategy was submitted by Professor Anatol Rapoport of the

University of Toronto and was called: "Tit-for-Tat." The basic strategy was that each prisoner starts

with one of the cooperative choices and then thereafter does what the other prisoner did on the pre-

vious round. The success of the strategy lies on its combination of being nice, retaliatory, forgiving

and clear. These are good concepts to base any set of rules in setting up a space society. The feed-

back loop inherent in this strategy is a response to what the other prisoner did in the previous round.

EXAMPLE 2- URBANIZATION

Another example of a simulation with very simple rules is that of urban evolution (Prigogine,

1980). One can use a variation of the logistic equation, mentioned previously, to characterize an

urban region in terms of economic functions which are located at places called cities. The economic

functions are dependent on populations. The efficiency of the feedback loop in which functions and

populations relate depend on the increase of the population and the competition from other rival

production units. When this model is run the appearance of an economic function works to destroy

the initial uniformity of the population distribution by creating employment opportunities that con-

centrate the population at a point. These may be destroyed by the competition from similar but better

developed economic functions. Some economic functions may develop in coexistence.

Figure 5 is a temporal sequence of an urbanization using the above model of an initial uniform

region, in which four economic functions try to develop at each point in a network of fifty localities.

This type of model permits an estimation of the long-term consequences of decisions conceming

elements such as transportation, investments, etc.

We see, that a model such as the above offers one an understanding of emergent order resulting

from the choices of the many agents operating under similar constraints and pursuing their own

goals. A complex structure such a space society can be shaped in this way.
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Figure 5. Urban evolution based on the logistic equation (Prigogine, 1980).
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This paper gives an overall view of the architectural design process and elements in taking an

idea from conception to execution. The project presented is an example for this process. Once the

need for a new structure is established, an architect studies the requirements, opinions and limits in

creating a structure that people will exist in, move through and use.

Elements in designing a building include factors such as volume and surface, light and form

changes of scale and view, movement and stasis. Some of the other factors are functions and physi-

cal conditions of construction. Based on experience, intuition and boundaries, an architect will utilize

all elements in creating a new building.

In general, the design process begins with studying the spatial needs which develop into an archi-

tectural program. A comprehensive and accurate architectural program is essential for having a suc-

cessful building. The most attractive building which does not meet the functional needs of its users

has failed at the primary reason for its existence. To have a good program an architect must have a

full understanding of the daily functions that will take place in the building.

The architectural program along with site characteristics are among a few of the important

guidelines in studying the form, adjacencies and circulation for the structure itself and also in rela-

tion to the adjacent structures. Conceptual studies are part of the schematic design, which is the first

milestone in the design process. The other reference points are design development and construction
documents. At each milestone is established review and coordination with all the consultants and the

user is essential in refining the project. In design development phase conceptual diagrams take shape,

architectural, structural, mechanical and electrical systems are developed. The final phase construc-

tion documents convey all the information required to construct the building.

The design process and elements described were applied in the following project.

SCIENCE COMPLEX

The Science Complex at Elizabeth City State University in North Carolina was constructed in

1989 and houses the major undergraduate Science curricula at the university. Primarily, the pro-

grams include Biology, Geo-Science, Physics, and Chemistry. The entire instructional program

includes classrooms, laboratories, support facilities, and faculty and administrative space. In

addition, the complex features a Science theatre/planetarium and a lecture hall to be used by the

community.
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Thefollowing is thearchitecturalprogramasapprovedby theuniversityplanningcommitteefor
the sciencecomplex:

A. General Purpose Instructional Fac. No. of Rooms Capacity (persons)

1. Lecture Hall 1 180

2. Science Theatre/Planetarium 1 60

3. General Purpose Classrooms 3 35

4. Lecture Classrooms (Tiered) 2 60

5. Seminar Rooms 4 20

6. Micro-Computer Laboratory 1 25

7. Library/Enrichment Center 1

B. Laboratories

1. Biology 2 35

2. Chemistry 2 35

3. Physics 2 30
4. Geo-Science 2 30

5. Research Laboratories 16 8- I0

6. Cartography Room 1 --
7. Animal Room 1

8. Greenhouse 1 --

9. Electron Microscope Room 1 m

C. Support Spaces (Instructional)

1. Storage and Preparation Rooms 8

2. Central Supply Rooms 2

3. Balance Room 1

4. Walk-In Freezer (Cold Room) 1

5. X-Ray/Dark Room 1

m

m

D

D° Facul _ty and Administrative

1. Department Chairpersons Office 3

2. Secretary/Department Chairpersons 3

3. Faculty Offices 20

4. Secretarial Pool (Faculty) 1

5. Faculty Lounge 1

6. Conference Room 1

1

1

1

4

25

Eo Student Facilities

1. Student Lounge

2. Student Organization Offices

1

5

F° Unassigned Space

Mechanical Space, Circulation,

Storage, Restrooms, and Other

Miscellaneous Space -

Approximately 35% of Net

The gross area for the building is programmed at 56,413 square feet.
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SITE DESCRIPTION

The site, located at the northeastern end of the Elizabeth City State University campus is

primarily fiat, typical for that region of the state. Very little vegetation existed on the site. Storm

drainage, water/sewer utilities, and electrical service were all available to the site from the campus

and/or from Elizabeth City.

SITE DEVELOPMENT

The site was developed in order to provide an anchor building to the northeastern end of the

campus, where most of the buildings are at least 30 years old or more. The challenge in master

planning this site resided in creating a landmark that would symbolize the community of Elizabeth

City. Another design criteria was the harmonization of the science complex within the low-key

campus atmosphere.

To stay in scale with the existing two and three story buildings, the mass of the new science

complex graduates from a one-story structure closest to the existing structures to a four-story

building adjacent to Hoffler Street. Figure 1 shows the layout of the site plan.

Because of its location, the site design sought to create a promenade of trees from the existing

campus to the science complex plaza area.

This promenade continues through the building, creating a bifocal entrance, with visitors from

off-campus having access via the Hoffler Street entrance and students and faculty gaining access

from the plaza. Outdoor classrooms, science exhibits, and other university events are scheduled at

this plaza. A new parking lot adjacent to the building will provide space for faculty and visitors

arriving to use the complex.

DESIGN SOLUTION

The main spine of this complex is an interior pedestrian atrium (Science Boulevard) extending

the campus entrance promenade (south) through the building and leading to the community entrance

(north). This atrium also connects the four story laboratory classroom building to high-use spaces

housing the lecture hall and the science theatre/planetarium. The primary reason for creating the

science boulevard was to provide interaction among students from all veins of science, faculty and at

times, community.

The four-story graduates from a one-story structure of the southeastern end of the building to a

four-story structure adjacent to Hoffler Street (city street). Each successive floor houses a smaller

number of functions commensurate and consistent with the program requirements. On the first floor

(fig. 2) are housed general purpose classrooms, lecture halls, the science theatre, library and the labo-

ratories for the Biology department. In addition, a connecting structure houses the animal room and

greenhouse spaces, which are primarily used by the Life Sciences, and other support spaces.
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Site Plan

Figure 1. Site plan.

The second floor (fig. 3) houses physics and chemistry facilities, student offices, and other sup-

port spaces. The third floor, (fig. 4) the Geo-Sciences with its corresponding support area, in addition

to administrative offices for department chairman. The fourth floor (fig. 5) is primarily faculty

offices. The central circulation system is a large atrium corridor connecting all floors by an open

stairway system (fig. 6). The form of this building followed the functional requirements. Figures 7

and 8 show model studies and elevations for this building.
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Figure 2. First floor plan (design).
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Figure 3. Second floor plan.
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ARCHITECTURAL MATERIALS

The exterior walls are composed of 4-inch face brick (the common material for this region),

1-inch air space, 1-inch rigid insulation, and batt insulation between studs, 6-inch metal stud and

gypsum board f'mish. All labs will have epoxy painted gypsum board. Figure 9 shows the wall

section cut through the north wall.

Materials used in the building will consist of the following:

Exterior glazing consists of 1-inch tinted insulated glass and spandrel glass in aluminum frames,

with fixed and operable units for ventilation and emergency egress.

Interior partitions are painted gypsum board on metal studs. Interior partitions are detailed to

meet the required fire protection requirements. Doors are stave-core wood units in hollow metal

frames. Exterior doors are aluminum framed with tempered glazing.

Ceilings in most areas are acoustical tile ceilings. As an alternate, the 30' 0" diameter projection

dome over the Science Theatre is fuse bonded vinyl on aluminum. The dome surface is 23% perfo-

rated for acoustical purposes. The Lecture Hall has reflective panels to direct sound evenly through-

out the space.

Single-ply roofing over rigid insulation is used on most roof areas. The Greenhouse is specially

skylighted to meet the requirements of that space. All roofing assemblies are designed to meet a

"U" value of 0.10.

Finish flooring in most areas is vinyl composition tile, with the exception of sheet robber on all

lab areas and ceramic tile floors in the toilets. The Lecture hall, Planetarium, all offices, conference

room, and student and faculty lounge areas are carpeted.

Miscellaneous fixed equipment will include the following:

1. Science Theatre/Planetarium: Fixed seating; desk and special projection equipment.

2. Lecture Hall: Fixed desks and seating, chalkboard and projection screen.
3. Seminar and Classrooms: Chalkboard and tackboards.

4. Library: Library shelving, casework.

5. Labs: Most labs include a fixed experiment station.

6. Support Areas: Storage and shelving, casework, and lockers.

STRUCTURAL SYSTEM

The structural system for the four-story science complex is structural steel frame. The roof

structural system is 1 1/2-inch-metal roof deck supported by H-series steel joist framed into wide

flange section steel beams. The floor structural system is 2 inch composite metal floor deck with a

3 l/4-inch light weight concrete topping. Steel beams and steel girders provide support to the

composite metal deck floor system.
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The foundation system is prestressed concrete piling driven into the dense to very dense sand.

MECHANICAL SYSTEM

Based on the data provided by a life cycle cost analysis of six mechanical system alternatives, the

following was selected. The cooling system consists of two reciprocating water cooled chillers. Heat

is provided by a fuel oil fired boiler. Exhaust systems: All laboratory spaces are furnished with labo-

ratory hood and exhaust system. The laboratories are also capable of being 100% exhausted for odor

and fume control.

The entire plumbing system was designed in accordance with all local, state and national

plumbing codes.

FIRE PROTECTION

An automatic sprinkler system was required throughout this building.

ELECTRICAL SYSTEM

Electrical systems included the following:

1. A complete system of power distribution equipment and wiring, power connections to

equipment, etc. Electrical service to the building is from a utility company padmounted transformer.

2. A complete lighting system, primarily utilizing fluorescent fixtures for interior spaces and

high pressure sodium fixtures for exterior areas.

3. A system of raceways, outlets, and equipment space to accommodate the installation of tele-

phone and other communications equipment.

4. A complete fire alarm system.

All systems--architectural, structural, mechanical and electrical--were selected in the design

development phase. In the construction document phase all the details were established for convey-

ing the information to all the prime contractors figures 10 through 12 show some examples of the

construction documents. Figure 13 presents the final image of the new Science Complex for the

Elizabeth City University at Elizabeth City, North Carolina.
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SUMMARY

NASA Ames Research Center (ARC) is building a research facility, the Biological Flight

Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of vari-

able gravity on living systems. The facility will be housed on Space Station Freedom and is antici-

pated to operate for the lifetime of the station, approximately thirty years. It will allow plant and

animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying

periods of time and with various organisms. The principal difference between current Spacelab mis-

sions and those on Space Station Freedom, other than length of mission, will be the capability to

perform on-orbit science procedures and the capability to simulate Earth gravity. Initially the facility

will house plants and rodents in habitats which can be maintained at microgravity or can be placed

on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate

future habitats for small primates, avian and aquatic specimens. The centrifuge will provide 1 g for

controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as

well as hypergravity studies. Included in the facility are a service unit for providing clean chambers

for the specimens and a glovebox for manipulating the plant and animal specimens and for perform-

ing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain

an understanding of the effects of microgravity on the structure and function of plants and animals,

as well as investigate the role of gravity as a potential countermeasure for the physiological changes

observed in microgravity.

INTRODUCTION

The microgravity environment represents an important research tool for the life sciences. Its

strategic use offers unprecedented opportunities to enhance our understanding of basic biological

processes. Space Biology seeks to understand how living organisms, which have evolved in Earth's

gravitational field, adapt both acutely and chronically to a microgravity environment. An extension

of this type of research includes the development of countermeasures to maintain physiological

responses at an appropriate level. Gravitational Biology seeks to understand the role that gravity

plays in all biological processes as it affects form and function. Both Space Biology and Gravita-

tional Biology require a laboratory in the microgravity environment with a centrifuge.

An inflight centrifuge which can provide controlled acceleration (artificial gravity) between

0 and 1-g is necessary if NASA is to take full advantage of the unique research resources of space-

flight. The capability to provide varying g-levels between 0 and 1 is not possible on Earth and an

inflight centrifuge fills this critical gap in the fields of Space Biology and Gravitational Biology.



Moreover,thecapabilityof the inflight centrifugeto produceartificial gravity to levelsof 2.0g will
enablehypergravitystudies.Themajorreasonsfor includingan inflight centrifugein theBFRFare
to provide: (1) a 1-gcontrol;(2) ameansof examininggravity thresholdeffects;(3) a supplyof
gravity-conditionedspecimens;and(4) developmentof intermittenthypergravitycountermeasures.
Therationalefor thesecapabilitiesare:

1-g Control

A major use of the inflight centrifuge is to satisfy the need for a 1-g control environment in order

to separate the effects of microgravity from those of other environmental factors. Rigorous research

standards dictate the use of adequate controls to ensure that the variable of interest is the causal

factor in any observed response. To date, ground-based controls have been used as the control for

spaceflight biological experiments. However, spaceflight produces far more perturbations in the

environment than simply an alteration in the g-field, e.g., varying radiation, atmospheric contami-

nants, vibration, illumination, magnetic field, and launch/reentry stress. Only through the use of an

inflight 1-g control can the effect of microgravity be isolated from these other variables.

Gravity Threshold Effects

Life has always existed under a 1-g field. Therefore, a reasonable and important scientific ques-

tion is how much can the normal gravity field be reduced or increased before significant changes are

seen? Or, asked from a slightly different perspective, what is the minimum or maximal intensity and

duration of gravity stimulus required to elicit a gravitational response? In order to determine grav-

itational effects satisfactorily, it is essential that the inflight centrifuge be capable of providing

different gravity levels between 0-g and 1-g. Understanding threshold gravity levels is essential to

the coherent development of gravitational biology as a more exact science.

Supply of 1-g Conditioned Specimens

The centrifuge can also be used as a specimen holding facility from which 1-g conditioned ani-

mals and plants can be obtained. The transition of biospecimens to microgravity can be made in a

controlled manner permitting careful and repeated observations of the acute responses to a 1-g

change in the ambient acceleration field. Similarly, biospecimens can be maintained under condi-

tions of weightlessness and then transferred to the l-g centrifuge to simulate the return to Earth's

gravity. Readaptation to 1-g often occurs so quickly that Spacelab-flown animals cannot be retrieved

soon enough to allow adequate study.

Intermittent Hypergravity Countermeasures

It is anticipated that within the next few decades space travel will involve long-duration manned

missions to other planets. Both the United States and the Soviet Union have relied on physical exer-

cise as a countermeasure for the crew to ameliorate the effects such as musculoskeletal loss and

70



cardiovasculardeconditioningcausedby exposureto themicrogravityenvironment.However,
anotherapproachmaybetheuseof hypergravityatintermittentintervalsto preventmicrogravity
deconditioning.Thecentrifugewill allow theinitial systematicstudyof theeffectof g intensity
versusdurationasacountermeasurein rodents.

HARDWARE

Themajorhardwareitemswithin theBFRFcomprisea suiteof hardwareknowncollectively as
the CentrifugeFacility andit is that suiteof hardwarewhich will bedescribedin this paper.The
CentrifugeFacility (CF),shownin figure 1,includesamicro-g habitatholdingunit, a largediameter
centrifuge,a glovebox,a specimenchamberserviceunit andthemodularhabitatswhich arehoused
eitherin theholdingunit or thecentrifuge.NASA Ameshasjust concludedacompetitivePhaseB
designconceptstudywith McDonnell DouglasSpaceSystemsDivision, HuntingtonBeach,CA and
with LockheedMissilesandSpaceCompany,Inc.,Sunnyvale,CAwhichdemonstratedthatit is pos-
sible to build thefacility andremainwithin thepower,volumeandweightconstraintsof Space
StationFreedom.Becausethesedesignconceptsareproprietary,thediscussionof thehardwarewill
be restrictedto functionalandscientific usesof thehardware.Thefacility is an integratedsuiteof
equipmentwhich mustfunctiontogether.A key element is the modular habitat. The habitat is

designed to fit either within the holding unit or on the centrifuge, and to mate with the glovebox.

Hence, interfaces must be compatible between the holding unit, the centrifuge and the glovebox.

Furthermore, the habitat may also be used to transport specimens to and from orbit.

HABITAT HOLDING _

Figure 1. Centrifuge facility.
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Centrifuge

A 2.5meterdiametercentrifugehasbeenbaselinedfor SpaceStationFreedom.Initially, a
1.8meterdiametercentrifugewasproposedsincethat wasthelargestdiametercentrifugewhich
couldbemountedin arack in thesciencelaboratorymodule.However,whenthedecisionwasmade
to place['he centrifuge in a node of SSF rather than in the science laboratory module, it was possible

to enlarge the diameter to approximately 2.5 meters by mounting it in the end-cone of the node. The

increased diameter of the centrifuge enhanced science capability as well as relieved engineering

packaging constraints. The increased diameter of the centrifuge significantly reduced the gravity

gradient across the specimens, increased the number of specimens which could be accommodated on

the centrifuge and permitted the inclusion of an inner concentric row of habitats on the centrifuge

rotor allowing two gravity levels to be run simultaneously. An ARC concept of the 2.5 meter

diameter centrifuge mounted in a node is shown in figure 2.

The centrifuge will provide a 1-g control environment, and varying levels of g for threshold and

other studies, and allow the development of countermeasures/artificial gravity techniques, including

intermittent hypergravity exposures. The centrifuge will be capable of gravity levels from 0.01 to 2 g

with a nominal spin-up rate which limits the acceleration experienced by the specimens to less than

Ha

Main rotor

Stationary
framework

Hub spindle

Extractor frame

Isolater locking
pin (for launch)

Mounting frame

Launch struts

Figure 2. ARC concept of the 2.5 meter diameter centrifuge mounted in a node.
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0.01g persecond.It will providelife supportfor bothplantsandanimals.Thecontrol accuracyof
theg level is 0.01g at thehigherg levelswith lessthan0.001g vibration impartedto thespecimens
in thehabitatin therangeof 5 to 100Hz. A momentumcompensationmechanismwill be incorpo-
ratedinto thedesignof thecentrifugeto minimizeattitudechangesof Freedomduringcentrifuge
startsandstopsandtheverysmall torque(2-5 ft-lb) dueto gyroscopiceffects.Severalapproaches
havebeenstudied,thesimplestbeingno additionalmechanismand°useof theControlMoment
Gyros(CMGs)of the stationitself. Most casesstudiedshowthis to beaviableapproach.

A uniquefeaturestronglyendorsedby thesciencecommunityis aservicerotor which canextract
habitatsfrom thecentrifugewithout havingto stopthe mainrotor.This featurewill minimize the
disturbanceto otherhabitatson thecentrifugeduringroutineservicingof thehabitats,including
wastetray changeoutandfood replenishment.In additionto enhancingthesciencecapabilityof the
centrifuge,the servicerotor alsohassomeengineeringbenefits.It significantly reducesthemass
which mustbespunup andspundownfor accessto the specimensandhencereducesmomentum
compensationactivity andthepowerrequiredfor thatoperation.Conversely,it increasestheengi-
neeringcomplexity of thecentrifugeby addingasubsystemwhich musthavethecapabilityto spin
upandpreciselymatchthespeedof themainrotor,engageandextractor inserthabitatsandspin
down.

During centrifuge operation there may be a dynamic mass balancing system to compensate for

variations in mass distribution along the rotor over the life of an experiment. The balance system and

vibration isolation system are expected to limit forces coming from the centrifuge to less than about

0.1 pound in the frequencies near the centrifuge spin rate. This value was derived from a preliminary

analysis which attempted to determine the magnitude of a sole disturbance force that would create

g-jitter in the US laboratory exceeding 10-6 g. The NASA Office of Space Science and Application

requires this ultra quiet environment for the performance of material science's experiments. How-

ever, one must keep in mind that nominal crew movement and SSF operations may impart as much
as 10 -3 g.

Life support functions not directly incorporated into the habitat are placed on the centrifuge. In

the ARC study these include air thermal conditioning and distribution, condensate collection, and

specialized gas supply. The life support functions on the centrifuge are analogous to those in the

habitat holding unit and are shown in figure 3.

Habitat Holding Unit

The habitat holding unit occupies a International high double rack and is capable of holding

either rodent habitats, plant habitats or a combination of both. Since the habitats must be accommo-

dated on the centrifuge, in the habitat holding unit, and the glovebox, the interface plate on each

must be identical and the partitioning of services between the holding systems and the habitats must
be the same.

A block diagram showing the ARC concept for life support of a habitat and the habitat holding

unit is show in figure 3. The habitat holding unit and the centrifuge condition the inlet cabin air by

HEPA and charcoal filtration and temperature and humidity regulation. Air enters the system
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Figure 3. ARC life support block diagram for the habitat holding unit and habitats.

through a heat exchanger and an air-liquid separator which conditions it to the lowest temperature

and humidity level required by the habitats. Heaters and humidifiers within the habitats adjust the

temperature and humidity to the required values. Air exiting the habitats passes through an air-to-air

heat exchanger and an air/liquid separator to reduce moisture content and finally through a charcoal

bed and HEPA filter before returning to the cabin. This meets Freedom's particulate and ECLSS

requirements of not contributing to the bioburden in the cabin or adding excess heat and humidity to

the cabin atmosphere.

In addition to the life support systems mentioned above, both the holding unit and the centrifuge

include a data management system and display panel for monitoring the environmental parameters of

the habitats. The data management system accommodates hard-wired, telemetered data and video.

The data signals are processed by the habitat holding unit subsystems to meet Freedom data network

requirements prior to transferring the data to Freedom's Data Management System (DMS) which

transmits the data to the ground either in real time, near real time or as time permits. The data system

will have limited data storage capacity and may have data compression capability. A representative

list of the types of rodent data which will be collected in the facility is shown in table 1. The system

is being designed to anticipate future needs and not limit the type of data to be generated by

investigators in the decades to come.
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Table 1. Representative data requirements for rodents

i

Sensor Sample Rate/Channel

EMG 4000

ECG 600

Tendon Force 200

Brain l.telectrode 20,000
EEG 300

EOG 250

Cardiac Dimension 250

Blood Flow 300

Core Temperature 0.02

Modular Habitats

Two types of habitats are being designed for biospecimens, one for rodents and one for plants. A

third habitat is under consideration for small primates but was not part of the scope of the recently

completed Phase B contract. The two contractors considered the design implications of having to

accommodate a larger primate habitat and designed the habitat holding unit and centrifuge in such a

way as not to preclude a small primate habitat as a growth option.

Rodent habitat- The rodent habitat is to house both rats and mice either in a group or individ-

ually. The habitats differ significantly from the Research Animal Holding Facility (RAHF) currently

flown on Spacelab. The major differences are level of containment (ref. 1), range of temperature,

video capability both in the light and dark cycle, adjustable light level, on orbit refurbishment of

cages, and hard-wired data collection system (ref. 2).

Although some of these features are mandated by the necessity to maintain biospecimens on

orbit in a closed environment, others will provide greater scientific return and range of experiments

than currently possible with the RAHF. Because Freedom is a long duration facility with planned

increments of 90 days between resupply visits, the habitats must be designed to be cleaned on orbit

efficiently and without releasing contaminants into the cabin environment. The animal habitats will

provide two levels of containment. The habitat itself provides a physical barrier and is also main-

tained at a negative pressure (minimum 0.5" water gauge) with respect to the cabin atmosphere.

Thus, if the physical integrity of the habitat should fail, the leak would be into the habitat rather than

into the cabin environment. All servicing of the habitat will be performed at the glovebox. No servic-

ing will be done at the rack front as is done on Spacelab. The habitats will be provided with an auxil-

iary fan for air circulation while the habitats are being transported from the habitat holding unit or

the centrifuge to the glovebox. The habitats will mate with the glovebox in such a manner as to

prevent particulates from escaping into the cabin. Two methods of cleaning the specimen chambers

were investigated--washing of the soiled chambers and replacement with disposable chambers. The

latter method was chosen because it did not require any power and because it was felt that the

technology for recycling water from a cage washer was not sufficiently mature.
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The temperature within the rodent habitats will be controllable over the range of 18-27 ° C +1 ° C

in increments of 1° C. Precise control of this parameter will extend the range of experiments to be

performed on orbit to include study of the thermoregulatory system and the use of compromised

rodents, e.g., hypothymectomized rats. The inclusion of a video system to monitor animals during

both the light and dark cycle will permit behavioral studies as well as provide needed activity data to

further elucidate observed changes in the musculoskeletal and cardiovascular systems attributed to

the microgravity environment. The habitats will also provide control of the illuminance and the

photoperiod. The illuminance will be controllable over the range of 5-100 lux in increments of 5 lux

and the photoperiod will be controllable to within + 1 minute with independent adjustable light and

dark periods without being constrained to a 24 hour cycle. This will permit controlled experiments to

determine the effect of the microgravity environment on response to light levels, on circadian

rhythms and on the thermoregulatory system.

Plant habitat- The science requirements for the plant habitat are ambitious and may be difficult

to achieve, especially during the early phases of Space Station Freedom. If achievable, they will

provide a unique facility in which to conduct basic plant physiology and far surpass the environmen-

tal control achievable with the Plant Growth Unit (PGU) currently used in the Shuttle middeck

(ref. 3). Some of the science requirements are: temperature control in the range of 15-30 ° C +1 ° C;

independent atmospheric control of 02 (5-27% + 0.5%) and CO2 (300-5000 ppm + 1%), ethylene

<5 ppb, air velocity 0-10 changes/hour +5%, photon flux 0-600 _tmole/m2/s +_5%, solid or liquid

growth matrix, and field or subdividable growing area. Engineering studies by the Phase B contrac-

tors suggest that it is not possible to meet all of the science requirements simultaneously and that it

will be necessary to restrict the range in which they can be met. For example, at high flux levels it is

not possible to meet the current temperature uniformity requirement at low air velocity. Hence one

must either relax the temperature requirement or relax the requirement to provide low air flow at

high flux. Nevertheless, even if the above requirements cannot be fully met, the flux level and con-

trol of atmospheric conditions in the plant habitat will be a significant improvement over the PGU

(75 _tmoles/m2/s and open loop to cabin environment). The plant habitat provided for the BFRF will

provide sufficient control of the necessary parameters to advance Space Biology and Gravitational

Biology, particularly in the areas of photosynthesis, metabolism and nutrient transport. It will also

provide much needed information on how to design the next generation plant habitat for use in the

microgravity environment.

Other habitats- Although the CF is only providing rodent and plant habitats, the habitat holding

unit and centrifuge are being designed with sufficient capability and flexibility to accommodate

advanced habitats, i.e., metabolic, avian, aquatic, provided that these habitats can meet the interface

requirements These include compatible air, water, thermal control, data, and power connectors.

Accurate temperature and atmospheric control and monitoring capability within the advanced

habitats would be within the habitats themselves, as they are in the rodent and plant habitats.

Specimen Chamber Service Unit

Initially, the specimen chamber service unit (SCSU) was envisioned as a cage washer capable of

washing and sterilizing specimen chambers for reuse and of recycling the water required for that

process. However, an ARC study concluded that it would be more feasible and resource-effective to
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providedisposablespecimencagesthanto washthecagesonorbit andto recyclethedirty water
(ref. 4). The SCSUis essentiallya storageunitwhichwill supplycleanspecimenchambers,waste
managementtrays,andfood for therodenthabitatsaswell asstoringthe spentunits.Becausedirty
specimenchambersandwastetrayswill alsobestoredin theSCSU,it will benecessaryto incorpo-
rateinto thedesignof tl_eSCSUawastemanagementsubsystemto limit andcontrolthereleaseof
biologically producedgasses.Thewastemanagementsubsystemwill haveto meetFreedom's
requirementsfor particulate,microbial, andodorcontrol.

Giovebox

The glovebox, in which all servicing and experiment protocols will be performed, is classified as

a modified Class 11I Biological Cabinet because it does not have a dunk box or an airlock and vents

to an interior space. Instead, the habitats and equipment transfer boxes will mate in a fully sealed

manner with the glovebox to meet Freedom particulate containment requirements. Moreover,

because Freedom is a closed environment, sufficient contamination control will be included in the

glovebox air exchange system to prevent the release of chemicals which could exceed the Spacecraft

Maximum Allowable Concentration (SMAC) levels. The current Space Station volume allocation

limits the glovebox to an International standard double rack but that volume may constrain the

performance of life sciences experiment tasks. In order to accommodate two workers simultane-

ously, a glovebox which can be deployed into the aisle is proposed. The ARC concept is shown in

figure 4. Z"

Data and electrical ports to support experiment unique equipment and general laboratory support

equipment will be provided in the work volume. Also included will be a video system for recording/

transmitting operations within the glovebox. In addition to performing the functions normally asso-

ciated with a Class 11I Biological Cabinet, the glovebox will provide some life support to the habitats

while they are connected to it for servicing and performance of experiment protocols. The glovebox

will have an interface plate identical to that in the habitat holding unit and centrifuge which will

provide power and air to maintain the specimens at nominal conditions. While connected to the

glovebox, the specimens will be maintained at approximately cabin temperature and humidity.

CONCLUSION

The pieces of hardware described above are the major elements of the Centrifuge Facility. The

centrifuge occupies the equivalent of two standard double racks but will be mounted in the end cone

of a node or in a specialized module to take advantage of the full diameter of the Space Station

structure. The habitat holding unit, specimen chamber service unit and glovebox each occupy a

standard double rack bringing the volume of the Centrifuge Facility to approximately five double

racks or six double racks if two habitat holding units are included. The power requirements of each

of the standard double rack elements is within the 3 kW supplied to each rack by Station.
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Figure 4. ARC concept for a deployable glovebox.

The Centrifuge Facility represents a major commitment to the performance of Life Sciences

research on Space Station Freedom by the NASA Office of Space Science and Applications. It will

continue the investigations begun on Spacelab and greatly expand the capability to perform onboard

analyses. The Facility will permit the life sciences community to fully exploit the microgravity

environment and use gravity as a research tool to understand basic biological processes and the

response of both plants and animals to the lack of gravity. Information learned from understanding

the mechanism by which plants and animals adapt will provide the foundation for designing effective

countermeasures for man's eventual exploration and habitation of the moon and Mars.

o
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SUMMARY

A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regen-

erate air and water while being grown as a food source in a closed life support system. Current plant

research is directed toward obtaining quantitative empirical data on the regenerative ability of each

species of plant and the system volume and power requirements. Two techniques were adapted to

optimize crop species selection while at the same time minimizing the system volume and power

requirements. Each allows the level of life support supplied by the plants to be selected, as well as

other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The

second method, which is used as a comparison with and validation of the first, utilizes standard

design optimization techniques. Simple models of plant processes are used in the development of
these methods.

INTRODUCTION

To date, life support technology is based solely on physical/chemical processes, and this is likely

to remain true for the initial phases of the Space Exploration Initiative. However, for long-duration

missions, such as a trip to Mars or long-term habitats on the Moon or Mars, a CELSS has the poten-

tial to provide human life support with significant cost and safety benefits over the currently envi-

sioned physical/chemical systems. In particular, food resupplied from Earth may be significantly

diminished, higher plants can accomplish both air revitalization (through the release of oxygen and

uptake of carbon dioxide) and water processing (through transpiration), and some waste disposal

may be accomplished biologically. Figure 1 shows an example of an integrated biological and

physical/chemical life support system (CELSS) as conceived by Dr. John Rummel, a NASA

scientist/administrator. Other studies have resulted in variations on this conceptual design (refs. 1-3).

Normally, a trade study is conducted to determine advantages and disadvantages of various

design options. Trade-study techniques can be developed in parallel with research on basic perfor-

mance parameters, so that when reliable data become available, the analysis tool is also ready to

perform trades. These tools will become increasingly important as we begin to address the complexi-

ties involved in integrating biological components with physical/chemical life support system

components.

To date, most research in the use of plants for life support has concentrated on productivity levels

and the effects of environmental parameters on productivity. Little work has been done in evaluating

the air and water regeneration and waste management capabilities, which would be the next logical
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Figure 1. Conceptual design for a controlled ecological life support system.

step towards developing an integrated life support system. The techniques outlined herein transform

newly acquired plant performance data into parameters describing a CELSS system for use in trade

studies, thus providing the link between generating data and developing an optimal CELSS design.

We are adapting two techniques to optimize crop selection for minimum power and volume

penalties. The first technique involves the use of decision analysis which implements a decision tree.

The second method, intended to be both a comparison with and a validation of the first, involves the

use of standard design optimization (linear programming) techniques. Previously, design optimiza-

tion techniques have been applied to crop mix selection to select the minimum crop area which

satisfies human nutritional requirements (ref. 4). While the results of that study do not account for

power penalties, nor do they allow for air and water regeneration constraints, some comparisons can

be made with our own data. These comparisons are reported in the results section of this paper.

A spreadsheet is used as an interface with the user and to generate plant and system parameters.

The user specifies the level of life support to be supplied by the plants for each life support function,

oxygen generation, carbon dioxide uptake, water regeneration, and nutrient (carbohydrate, lipid, and

protein) production. Plant parameters are generated both directly from input, empirical data and from

models of plant processes. However, the techniques are intended to be generic and applicable to

other plant parameter generation schemes.
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APPROACH

Derivation of Plant and System Parameters for Input to Analyses

Parameters specifying system requirements are input into the spreadsheet section shown in

table 1. Here the user can input which crops of those whose performance data has been entered into

table 2 should be considered. Up to five crops can be chosen. If variety in the crop mix is desired, a

minimum number of crops can be entered (a number greater than one will force multiple crops to be

chosen). Currently this feature only applies to the decision analysis method. The level of life support

to be fulf'dled by plants and the daily life support requirements (ref. 5) are input into table 1, as well

as the power and volume penalties (refs. 6 and 7) and end-to-end lighting efficiency.

Table 2 lists parameters which were obtained from the literature and other sources of plant data

(refs. 8-12). These parameters include each species' rate of transpiration and biomass growth as well

as diet composition, edible fraction, and chamber height requirement. The lighting level and photo-

period under which these rates have been measured are also recorded and used for the power

requirement calculations. There are a myriad of other factors that influence plant productivity, tran-

spiration rates, edible fraction, and even diet composition, such as carbon dioxide level, oxygen

level, nutrient solution composition, temperature, and humidity. These influences could be added in

a more sophisticated effort to derive the parameters for the analyses input, but are not necessary for

our purposes of technique development and demonstration.

Table 3 lists the parameters describing plant species performance required by the optimization

methods. Generation of these parameters can be accomplished in many different ways, from using

empirical data to employing modeling techniques. We have elected to use a combination of these

two methods, largely because gas exchange data for plant species are limited. Parameters which are

more readily available from empirical data are used directly and as the basis for some simplified

relations used to generate the remaining parameters.

Transpiration rate and biomass production rate are taken directly from the empirical data

recorded in table 2. The fat, carbohydrate, and protein production rates are products of the biomass

generation rate, fiabi o , the edible fraction, and the fraction of the total biomass generation, which is

fat, carbohydrate, and protein, respectively.

fat generation

carbo, generation
protein generation

[ fat fraction

= rhbi o * (edible fraction) * | carbo, fraction
[_protein fraction

Carbon dioxide and oxygen generation rates are difficult to find in the literature, but are products

and reactants of photosynthesis and respiration, as is biomass production. This link between biomass

production and gas exchange rates is described by the photosynthetic equation, assuming respiration

is ignored. The chemical reaction of photosynthesis varies with the biomass type being formed,

whether it is fat, carbohydrate, or protein. For simplicity, here it is assumed that carbohydrate is the

substance formed. The photosynthetic equation describing carbohydrate formation is (ref. 13).

. 6CO2 + 6H20 _ C6H1206 + 602
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Table 1. CELSS specifications input
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This equation gives the ratio of moles of carbohydrate produced to the moles of carbon dioxide

taken up and oxygen released. Converting these mole fractions to mass fractions (using the corre-

sponding molecular weights) the oxygen generation rate, rho2, and the carbon dioxide take-up rate,

rhco 2 , are related to the biomass production rate, rhbi o, by

riaoa = 1.0667 rnbi o

rhco 2 = 1.4 rhbi o

The power requirement is determined using the lighting level recorded in table 2 measured as

Photosynthetic Photon Flux (PPF, the radiation given off by the lights in the wavelength band useful

for photosynthesis), the photoperiod which is the hours each day that light is supplied to the plants,

and the lighting system efficiency, T1,which is the end-to-end efficiency of the lighting system. The

equation used to calculate the required power, PREQ, is

PPF * photoperiod
PREQ = 11

We have not incorporated optimum lighting levels for crops in this study. For a legitimate

application of these techniques, either data representing crops at optimal conditions must be entered

into table 2 or a more sophisticated, compensating model must be devised. Alternatively, multiple

entries of the same crop species could be made with parameters reflecting the crops' performance

when optimized for biomass production, transpiration, power, or volume conservation.

The final calculation is the total cost. This is the sum of the power and volume (height times

lm 2) times their corresponding penalties as given in table 1.

Total cost = (PREQ)(Power Penalty) + (Volume)(Volume Penalty)

Note that this function could be made more sophisticated by weighting the relative importance of the

two requirements or by adding mass as an additional cost. While mass penalties could easily be

incorporated into the cost function, current understanding of mechanically optimized plant chamber

mass is sufficiently limited to defer incorporating mass penalties into this study.

DECISION ANALYSIS METHOD

Decision analysis methods (ref. 14) provide a tool for making decisions based on a single princi-

pal value (in our case, we have chosen to express everything in terms of cost). Most often, the tool

used in decision analysis is a decision tree, where all possible outcomes and all possible paths to

these outcomes are diagrammed. Many decision-tree analyses also have expected values or proba-

bilities attached to each branch stemming from a decision or node. In our case, we are merely

minimizing cost at each decision node, with equal probability that any particular pathway will be

followed. The decision tree (fig. 2) is constructed such that the initial decision determines which

crop selection is the cheapest for all permutations of solutions having the same number of crops. A
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Figure 2. Decision tree.

second round of decision-making is then done to determine the most economical number of crops
one could use.

Computation of the cost values is shown in table 4. The assumption is made that an equal area is

allotted to each crop in a crop mix. Thus the generation/dissipation rates of the plant products,

power, volume, and cost are averages of the individual crops in a crop mix computed on a per-m 2

basis. The penalties incurred by this assumption are shown through the comparison of results with

the results from the design optimization method, where this assumption is not required. The required

generation/dissipation rates (calculated from the human requirements and the degree of support

specified in table 1) are divided by the productivity of each crop mix to obtain the scaling factor

(planting area in m 2) required to meet the specified level of life support. The largest scaling factor
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encountered for a particular crop mix is multiplied by the Cost of the crop on a per-m 2 basis to obtain

the cost penalty entered in the decision tree.

A feature of the decision tree tool is the accessibility of cost values for all crop mixes. This allows

the designer to investigate the cost of non-optimal solutions which might have more appeal than the

optimal solution for qualitative reasons. For the example shown in figure 2, increasing the crop

variety by selecting the most optimal 4 crop solution over the 3 crop solution increases the cost by

18%. Also, if a designer preferred wheat over potatoes in the optimal crop mix of lettuce, potatoes,

and Y (crops 1, 2, and 4), the decision tree shows an increase in cost of 14% for lettuce, wheat, and

Y (crops 1, 3, and 4).

DESIGN OPTIMIZATION METHOD

An alternative to using the decision analysis method described above is to take a design

optimization approach (refs. 15 and 16). One can then minimize the cost function while removing

the assumption of equal crop growth areas. For example, we use a linear programming approach to

solve the constrained optimization problem

minI_(c°st)iarea[___ 1 (area)i[

Subject to the following constraints

N

E (H20 transpired_
i=l

(area) i > H20 transpiration requirement

N

Z ( CO2 rem°ved_
area Ji

i=l

(area)i > CO 2 removal requirement

N

Z
i=l

02 produced_" Ji (area)i > 02 production requirement

protein lower bound <

N

protein produced
E\ area )i
i=l

(area) i < protein upper bound

N

(carbohydrate produced'_
carbo, lower bound < Z \ _--e"a Ji (area)i < carbo, upper bound

i=l

89



lipid lowerbound<

N

2 ( .lipid pr°duced _ (area)i <-

i=l

lipid upper bound

where i identifies the crop species and N is the total number of crops being considered. The objective

is then to identify the crop mix which minimizes cost while meeting certain requirements for air and

water regeneration as well as food production. One could easily modify the above formulation to

include additional requirements, such as vitamin and mineral nutritional requirements, or to include

additional constraints, such as physical constraints on the crop-growth areas due to rack-size

limitations or edge-effect considerations.

This constrained optimization problem can be solved using standard linear programming

techniques. We used a SIMPLEX algorithm, coded in FORTRAN on a MicroVax 3200 computer.

The algorithm f'n'st identifies whether a feasible solution exists, then solves for the optimum solution

and determines whether or not the solution is degenerate (i.e., an infinite number of solutions exist).

The optimization method has computational advantages, especially when a large number of crop

species or nutritional requirements are being considered. The decision analysis method requires an

exhaustive search since the cost of each possible solution must be calculated, while the optimization

method uses search directions to quickly find the optimum solution. Also, standard methods exist for

performing parameter sensitivity analyses for the linear programming formulation. Such analyses

would be very useful for performing "what if" studies to investigate the effects of changing costs or

productivities of the various crop species.

RESULTS

Table 5 shows the decision analysis output for the baseline case outlined in tables 1-3. For this

case we have specified 100% of the requirements for oxygen, carbon dioxide, and carbohydrates to

be fulfilled, as well as 40% of those for water, 25% of lipids, and 25% of protein. Results show three

crops being selected (lettuce, potatoes, and Y) as the optimum mix, with a total area of 3.0 m 2 and

total cost of 2.33. Results also show that in order to supply 100% of the carbohydrate requirement,

oxygen, carbon dioxide, water, and protein are oversupplied, and more carbon dioxide is taken up

than is necessary. In design optimization terminology, carbohydrates are the active constraint.

Table 6 shows the results of the design optimization technique for the same base set of con-

straints. Recall that this technique is not limited to equal areas for each species in the crop mix

selected. This is reflected in the results, which in this case show three crops being selected (lettuce,

Y, and soybeans), with a total area of 2.5 m 2 at a cost of 2.16. Examining the results, we see that the

carbohydrate, water, and lipid requirements are active constraints.

The optimization technique can also be used to examine the optimal solution in the case where

protein, carbohydrate, and lipid production all become active constraints. This is accomplished by

setting the upper and lower bounds on these variables all equal to 100% of the requirements, thus

forcing the optimization to choose a crop selection which produces a nutritionally balanced diet (no

over production _f protein, carbohydrates, or lipids). In the baseline case, no feasible solution exists.
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Table5. Decisionanalysisbaselineresults

3

1.0

1.40

2.33

171

Table 6. Design optimization baseline results

Totalcost = 2.1595

Total area = 2.5004 m 2

Area of crop #1 (lettuce)

Area of crop #2 (potatoes)

Area of crop #3 (wheat)

Area of crop #4 (Y)

Area of crop #5 (soybeans)

CO2 removed = 2.1621

02 produced = 1.5724

H20 processed = 12.5040

Protein produced =

Carbohydrate produced =

Lipid produced =

= 0.0584 m 2

= 0.0000 m 2

= 0.0000 m 2

= 2.3549 m 2

= 0.0870 m 2

kg/day (216.21

kg/day ( 187.19

kg/day ( 40.00

% of human reqt.)

% of human reqt.)

% of human reqt.)

24.48 g/day ( 32.21

633.00 g/day (100.00

26.25 g/day ( 25.00

% of human reqt.)

% of human reqt.)

% of human reqt.)

91



However,if cropX is substitutedfor cropY asolutionexistssuchthat exactly100%of theprotein,
carbohydrate,andlipid requirementsaresatisfied.In this example,lettuce,potatoesandcropX are
selected,andcarbondioxide,oxygen,andwaterrequirementsaresatisfiedbut arenotactive
constraints.

Note thatin thebasecase,wehavesetthe lipid requirementto besatisfiedby theplantsto a
fairly low level (25%).In the studyof reference4, it wasfoundthatthe lowesttotal area(only nutri-
tional needswereevaluated)resultedwhennominimumpercentageof fat wasmadeavailableto the
diet via plants.We havenot found thelipid requirementto beanactiveconstraintin ourcase,per-
hapsbecausewehaveconstrainedit to only asmalldegree.Sinceadditionalconstraintshavebeen
addedto thebaselinecase(andthecropsto beconsideredhavebeenchanged),thecostincreasesto
3.0requiring4.8m2of croparea.

In astudyby McDonnellDouglas(ref. 4), it is foundthatthe lowesttotal area(only nutritional
needsareconsidered)resultswhenno lipid productionrequirementis placedon theplants.In the
baselinecaseof ourstudy,the lipid requirementto besatisfiedby theplantsis setto a low level
(25%).Forthis casethelipid requirementis notanactiveconstraint.However,whentherequire-
mentsfor thethreenutritionalcategoriesareincreasedto alevel of 100%,lipids becometheactive
constraint,which is consistentwith theMcDonnellDouglasstudy.

SENSITIVITIES

There are several ways in which sensitivities can be examined. Two approaches are demonstrated
below.

From the results of the baseline case, it was determined that carbohydrates were an active

constraint. With this in mind, we might like to see how sensitive our answers are to the specified

carbohydrate requirement. For example, what happens when the carbohydrate fulfillment level is

lowered to 50%? The decision analysis results show a 40% savings in cost and a 15% decrease in

crop area using only soybeans and Y. With this new requirements specification, the active constraint

shifted to water fulfillment. The design optimization method showed a 38% savings in cost and a

21% decrease in crop area. The active constraints remain carbohydrate and water fulfillment. This

sensitivity analysis demonstrates that resupplying a portion of the carbohydrates from Earth might be

preferred to requiring the plants to produce the entire requirement depending on resupply costs.

Another approach to analyzing sensitivities is to examine the effect on the results when plant

performance data for a particular species are altered. As an example, the biomass production rate and

transpiration rate were varied (doubled and halved) about nominal values. Table 7 lists the results of

the two methods to each of these cases. This table shows that certain increases in plant performance

parameters result in larger cost savings than others. This method could provide a tool for steering

plant research, as well as addressing the balance between transpiration rate and plant biomass

production.
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Table7. Parametersensitivityanalysisresults

Crop
Y

Biomass
generation

rate

kg
_m2d.

0.35

0.70
(nominal)

1.40

LEGEND:
P = potato
L = lettuce
W = wheat
S = soybeans
Y = Y

2.5

D_AA
cost: 2.45

area: 3.4 m 2

species: L,P

OPT

cost: 2.36

area: 3.50 m 2

species: L_S

DA

cost: 2.42

area: 3.3 m 2

species: L,Y,S

OPT

cost: 2.28

area: 2.98 m 2

species: Y,S

D__A
cost: 1.73

area: 2.5 m 2

species: Y,S

OPT

cost: 1.56

area: 2.29 m 2

species: Y,S

Transpiration rate

kg

.m2d_

5.0

(nominal)

D_A
cost: 2.45

area: 3.4 m 2

species: L,P

OPT

cost: 2.36

area: 3.50 m 2

species: L_S

DA

cost: 2.27

area: 3.1 m 2

species: L,Y,S

OPT

cost: 1.96

area: 2.34 m 2

species: Y,S

DA

cost: 1.41

area: 2.0 m 2

species: Y,S

OPT

cost: 1.40

area: 1.97 m 2

species: Y,S

10.0

DA

cost: 2.42

area: 2.9 m 2

species: L,Y

OPT

cost: 2.24

area: 2.76 m 2

species: L,Y

D_._AA
cost: 1.87

area: 2.3 m 2

species: L,Y

OPT

cost: 1.79

area: 2.17 m 2

species: L,Y

D__AA
cost: 1.19

area: 1.4 m 2

species: Y

OPT

cost: 1.06

area: 1.32 m 2

species: Y,S

DA = results from decision analysis
_tOPT -- results from desi=n optimization
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CONCLUSIONS

1. The design optimization method clearly provides the most optimal crop selection of the two

methods considered. The decision analysis method results are usually within 10% of the cost and

total crop area of the design optimization results.

2. The advantages and disadvantages of both methods imply that the two methods are ideal com-

panions to one another. The decision analysis method allows an interactive atmosphere with the user,

facilitating experimentation with design specifications. A decision tree displays the cost of all crop

mixes simultaneously. This allows the user to evaluate at a glance the cost of additional variety of

preferred (more appetizing) crop species.

The design optimization method has computational advantages especially when the number of

crops being considered or the number of nutritional (or other) constraints become large. It also

ensures that the last 10% of cost and area savings will be provided by the specified crop mix, and it

allows the user to further constrain the optimization problem as needed. A more rigorous sensitivity

analysis approach could also be developed using this method.

3. There are limitations to this analysis. A significant limitation of the decision analysis method

is the assumption of an equal area for each species in a crop mix. Both methods are limited because

they do not allow the plant performance parameters to be simultaneously optimized (the transpiration

rate/biomass generation rate trade-off, as well as other variables). No attempt is made to account for

the compatibility of crop species if a common air space or nutrient delivery system is planned. Also,

the power and volume of the processors required to support a plant system, including environment

control, are not accounted for.

.

.

,

.
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INTRODUCTION

The complexity and inter-dependence of software on a computer system can create a situation

where a solution to one problem causes failures in dependent software. In the computer industry,

software problems arise and are often solved with "quick and dirty" solutions. But in implementing

these solutions, documentation about the solution or user notification of changes is often overlooked,

and new problems are frequently introduced because of insufficient review or testing. These prob-

lems increase when numerous heterogeneous systems are involved. Because of this situation, a

change management system plays an integral part in the maintenance of any multi-system computing

environment. At the NASA Ames Advanced Computational Facility (ACF), the Online Change

Management System (OCMS) was designed and developed to manage the changes being applied to

its multi-vendor computing environment. This paper documents the research, design, and modifica-

tions that went into the development of this change management system (CMS).

RESEARCH INTO CHANGE MANAGEMENT SYSTEMS

Change management systems have been defined in as many ways as they have been named.

Numerous articles document locally-developed and vendor-supplied software management packages

and change management systems. Research into the requirements of a CMS revealed the following
definitions.

An article describing "change control software" stated, "the primary purpose of a change control

system is to impose management control over the application development environment without

affecting productivity" (ref. 1). The author proposed that a complete change control system should

provide MIS organizations with source code change management, audit trails of the changes,

synchronization between load modules and source, task and project reporting, management control

over parallel development, and options for handling control and quality assurance groups (ref. 2).

Another article described "change management" as a means of ensuring accountability, stating,

"It is the function of change management to control the implementation of the new system--to

schedule the moment on which it is installed to ensure that all affected users are aware of the change

and to control backout procedures" (ref. 3).

A more encompassing view, incorporating control of the complete configuration, was described

as "configuration control." The author stated, "it should be possible to track source and object code,
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loadmodules,testdata,documentation,andsoforth automatically,andto defineall applications
components"(ref. 4).

But, regardlessof what thedefinition for changemanagementis, or to whatextentonefeels it
coversthetotal systemconfiguration,therearebasiccomponentscommonto mostchangemanage-
mentsystems.Eachof thesecomponentsplaysanimportantrole in thesuccessof theCMS. The
generalcomponentsthatareidentified in thenumerousarticlesonchangemanagementinclude:

• Softwaremaintenancepackagesfor developing,maintaining,andcontrolling code.

• Managementforms andreportsto recordchangerequestsandproblems.

• Changereviewprocessesto reducethenumberof"quick fixes" andto promoteplanningof
thechanges.

• Documentationandcommunicationof thechanges.

• Changeimplementationandbackoutprocedures.

Whenselectingachangemanagementsystem,it is imperativethatthechosenpackagemeetsthe
needsof yourenvironment;but thesinglemostimportantfeatureto havein your systemis "easeof
use."Theusersmustbewilling to usethesystemin orderfor anychangemanagementsystemto be
successful.

CHANGE MANAGEMENT SYSTEM REQUIREMENTS AT ACF

At the Advanced Computational Facility at NASA Ames Research Center, the need for a change

management system was recognized, but because of the number of heterogeneous systems that were

being maintained, and the small amount of software development that was being done, our needs

appeared unique when comparing them to the needs addressed by most systems. The majority of

changes that needed to be managed at the ACF were modifications to the site-controlled parameters

and the configurations of two Cray supercomputers and connected Digital, Silicon Graphics, and Sun

Systems. Prior to the implementation of a CMS, changes to these systems often affected our staff

and users, but notifications about the changes were not being made. We also experienced problems

in which changes to one area of a system affected other areas, but because of insufficient review of

the changes, the effects were not noticed until the changes were implemented.

A recent article best defines the CMS requirements that the ACF had when the author described

the "software configuration management" function as filling the "need for some organization to

ensure that all parties know how to request a change, that a change is necessary, that all affected par-

ties agree with the change, that all parties are informed of the impending change, and that there is a

record of all changes made, who made them, when they were made, and why they were made"

(ref. 5).

98



Similar to this definition of thesoftwareconfigurationmanagementfunction,ourprimary
requirementfor achangemanagementsystemwasto providenotificationof changesto theACF
staff andthesystemusers.Otherimportantrequirementsfor this systemincludedtheneedfor review
of thechanges,completionof documentationaboutthechange,andtrackingtheknownproblems
identifiedin thevarioussystems.Becauseof thesmallamountof softwaredevelopment,therewas
noneedfor a softwaremaintenancepackagewithin ourCMS.

DESIGNING A CHANGE MANAGEMENT SYSTEM

The first change management system for ACF was defined in July 1989. The stated goals of this

system were to ensure that all parties were informed of changes and that the impacts of the changes

were considered before changes were made. This CMS consisted of seven forms that were used to

manage the system, including three forms to document the problem and solution surrounding the

change, track the review of the change, and describe the impacts of the change and schedule its

installation. Also included were three logs to provide management summaries of the open logs,

approval status of the logs, and completed system changes. The final form was the change notifica-
tion that was sent via e-mail to ACF staff members.

The Systems Group within ACF used this system for two months before it was expanded to

include the rest of the staff. In August 1989, a survey was sent to the staff to determine whether the

expectations for the CMS were being addressed. The responses received in this survey indicated that

the system was too complicated, stating that the best way to ensure continued usage of this system

was to simplify the design. As a result, the components of the CMS were reduced to include only

three forms: the tracking form (figs. 1-3) which contained the problem, solution, and impacts of the

change, as well as the review committee's approval status; the problem log (figs. 4-5) which was

used to report the status of all logs on a weekly basis; and the e-mail notification that informed the

staff of changes.

The survey also asked what features were required in the CMS. The majority of the responses

indicated that the required features included the documentation of known problems, internal notifi-

cation of changes, and the review of the changes. The components of the CMS handled these
features.

The revised change management system was used within the ACF from August 1989 through

May 1990. The procedure for using this system was as follows:

1. A problem or change request was reported by filling out a tracking form that included the

problem description and any workarounds for the problem. This form was given a log number and

assigned to an analyst.

2. When a solution was available, the solution portion of the tracking form was completed and
the form was submitted to the review committee.

3. The review committee approved implementation of the change, or requested that additional

work and/or notification be done before the change was implemented.
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PROBLEM TASK TRACKING FORM

Log Number:

Submitter:

Brief Description:

Contact:

Date Submitted:

Full Description:

Initial Response: SPR or Vendor No.:

Solution:

Rev. 11/89

Figure 1. Tracking form (side 1).

Page 1 of 2
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CHANGE NOTICE

Change Type:

Reviewed By:

Impact Analysis:

None _ Routine _ Scheduled _ Emergency

Consequences of No Action:

COMMITTEE RESPONSE

Impact Analysis Response:

Change Management Committee Actions:
Initials/Date: _ Approved
Initials/Date: _ Approved
Initials/Date: _ Approved
Initials/Date: _ Approved

Disapproved _ Held
Disapproved __ Held
Disapproved m Held
Disapproved w Held

Date/Time of Change:

Date of Mail Notice:

INSTALLATION AND MAIL NOTICE

Rev. 11/89

Figure 2. Tracking form (side 2).

Page 2 of 2
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Definition of Fields:

Problem/Task:

Log Number:

Contact:

Submitter:

Date Submitted:

Brief Description:

Full Description:

Initial Response:

SPR or Vendor No:

Solution:

Change Type:

Reviewed By:

Impact Analysis:

Tracking Form

Identifies whether the log documents a problem or a task.

Identifying number for the problem log.

Analyst assigned to resolve the documented problem.

Person submitting the problem log.

Date the log was submitted.

One line description of the problem.

Detailed description of the problem.

Description of applied workaround or initial suggestion for a
resolution for the problem.

Assigned vendor number if this is a vendor's problem.

Description of the problem solution.

Type of change installed.
None no change occurred,
Routine pre-approved common change.
Scheduled change which has been scheduled.
Emergency critical change, pre-approval not required.

Analyst who reviewed the problem solution.

Impacts the change will have on users and staff.

Consequences of No Action:
Consequences of not making the change.

Impact Analysis Response:

Further actions requested by the Review Committee.

Change Management Committee Actions:

Initials, date, and approval indication from the committee
members.

Date/Time of Change: Date and time the change was installed.

Date of Mail Notice: Date the staff notification was sent.

Figure 3. Tracking form field descriptions.
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PROBLEM LOG

Log Submit Contact
No. Date

Status Type/ Ref. No.
Close Dt

DESCRIPTION

(Date/Time of Report)

Figure 4. Problem log.

Page
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Definition of Fields:

Log No.

Submit Date

Contact

Status

Type�Close Dr.

Ref. No.

Description

Problem Log

Log number from the Tracking Form.

Date the Tracking Form was submitted.

Analyst assigned to resolve the problem or task.

Current status of problem or task.
Received

Assigned
Active
New

Approved

Closed

Statuses are:
Form has been received, but is not assigned.
Form has been assigned to an analyst.
Analyst is actively working on the problem.
Analyst has a fix available for the problem; the
response is in the change review process.
Response has been approved, but it is not yet
installed.
Problem is closed.

Identifies the

tracking form.
6-Project
5-Problem
4-Task
3-Vendor
2-Chng Req
Date

type of problem or task that is documented on the
The types are:

Major system project.
System problem.
Minor request or system enhancement.
Problem reported to vendor.
Change is awaiting approval by committee.
Date the log was closed.

Vendor log number for problems reported to the vendor.

One line problem or task description from the Tracking Form.

Figure 5. Problem log field descriptions.

4. Upon approval of the change, an implementation date was set for the installation of the

change.

5. After installation of the change, an e-mail notice was sent to the ACF staff to inform them of

the change.

After the initial entry of problems into the CMS, the usage of this system fluctuated between 13

and 36 logs entered each month, with an average of 27 new logs per month. The peak months of

usage coincided with memos to the staff emphasizing the importance of this system. The review pro-

cess for the logs also fluctuated greatly. The committee initially met once a week to review proposed

changes, but eventually each member individually reviewed the logs. Because of this process, review

of a log could take from one day to one month, and numerous changes were implemented without
review.
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In May 1990, the CMS underwent a review of its effectiveness when a second survey was sent

asking the staff to evaluate the CMS. The areas of "documentation of known problems" and "weekly

reporting of CMS information" received the highest scores for the CMS features. Both of these cate-

gories received an average score of 7.0 on a scale of 1 (poor) to 10 (great). Internal notification of

changes received a 6.6 score, but the category for "change review" received only a 5.3. The overall

effectiveness of the CMS, when compared to the previous informal method of managing changes,

was rated as 6.7, indicating that the CMS was superior to the old method. But the overwhelming

endorsement of CMS was indicated by 100% of the users stating that this system should be
continued.

Statistics obtained from the CMS logs showed that 337 problems and tasks were documented

during the ten-month period. Of these, 298 logs were closed, with only 42% of them reviewed by the

review committee prior to implementation. Of the reviewed logs, 11% had requests for additional

action before implementation. Internal notices were issued for 43% of the closed logs.

Recommendations from the survey revealed that 43% of the respondents wanted online database

features to ease the use of the system and enhance its capabilities, and 36% mentioned that the

review process needed improvement.

DESIGNING AN ONLINE CHANGE MANAGEMENT SYSTEM

In December 1990, a design for an online CMS was completed, and in late April 1991, the paper

CMS system was replaced by the Online Change Management System (OCMS). A total of 674 logs

had been entered through the old CMS. All open logs were transferred to the new system.

The location for OCMS was specifically chosen to provide easy access for the users. The goals

of OCMS included: ease-of-use; the capabilities to enter, transfer, update, comment, close, reopen,

and display problem logs; the automatic notification to the OCMS users about new comments and

log transfers via e-mail; a command to list recently changed logs; and an audit trail about entries to

the logs. The review committee was no longer in effect; instead, each user had the responsibility of

staying up-to-date on the information documented in the logs, and they had the capability of adding

requests or information to any of the open logs. To accommodate both novice and experienced users,

the OCMS provided command and menu-driven modes of operation. An administrator was assigned

to maintain the system and to add and delete users of the system.

From May 1991 until mid-November 1991,280 logs were entered on OCMS, averaging 40 logs

per month. This represents a 48% increase over the previous CMS. Of these, 92 logs (33%) received

additional comments, and 188 logs were closed.

The new OCMS is more widely accepted than the old system, and it has proven to be much

easier to use. The process for entering a log (fig. 6) is to enter OCMS and respond to the prompts for

the required information. A summary of the new log is displayed when all the information has been

gathered. Figure 6 shows an example of the command mode of OCMS; figures 7 and 8 show an

example of displaying a full log via the menu mode.
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As with thepreviousCMS, weagainreviewedhow well wehadaddressedthegoalsfor OCMS.
Enhancementrequestsweresolicitedfrom thestaff,andasecondversionof theOCMS was
designedandreleasedin November1991.

OCMSVersion2 providedcategoriesfor theproblemor taskbeingdocumented,which allows
for summarizingthetypesof problemsweencounter.It alsoprovidedacapabilityto searchfor a
string in thebrief problemdescription.For theadvancedusersof this system,thecommandformats
wereenhancedto acceptuniquestringsratherthanfull wordsasparameters.Furtherwork is in
progressto improvetheeditingcapabilitieson this system.

$ ocms -c enter

Starting new log.

Enter Log Category

Valid Categories are:

1) Accounting 12) Libraries 22) Sys Problems

2) Backups 13) Mailer 23) Sys S/W Maint

3) Benchmarks 14) Networks 24) Tapes

4) CCF 15) NQS 25) TMX

5) Compilers 16) Ops Procedure 26) Training

6) Configuration 17) Other 27) ULTRIX

7) DMF 18) OWS 28) User Services

8) Documentation 19) Performance 29) Utilities

9) Hardware 20) Security 30) VMS

10) In-house S/W 21) Sys Admin 31) Workstations

11) IOS Problems

Enter Category Number: I

Submitter: bonifas Status: Received Category: Accounting

Date/Time Submitted is: Fri Dec 6 17:31:54 1991

Implementation Date: none

Enter brief description:

<Brief problem description is entered here. >

Enter full description or ctrl-f to include a file (terminate with a '

<Full details of a problem are entered here.
<.

DO you wish to (Commit/Abort/Edit) [Commit]: C

Should this be transferred to you (y/n) : n

Mailing to: brosen

99 (None) Brief problem description is entered here.

Submitter: bonifas Status: Received Category: Accounting

Date/Time Submitted is: Mon Nov 4 13:34:06 1991

Implementation Date: (none)

'):
>

>

DESCRIPTION:

Full details of a problem are entered here.

Figure 6. Log entry on OCMS.
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$ OCm8

Welcome to the ACF

Online Change Management System

OCMS, Release 2.0

Online Change Management System: Release 2.0
4

The Online Change Management System functions are as follows.

The OCMS command option for the function is listed in parentheses.

i)

2)

3)

4)

5)

6)

7)

8)

9)

Display information about a log (view)

Enter a new log (enter)

Transfer a log to a new owner (transfer)

Add a con_ment to a log (comment)

Add a planned solution to a log, but don't close it (solution)

Schedule the implementation date for a log (schedule)

Close a log (close)

Reopen a closed log (reopen)

Recategorize a log (category)

Enter option number (<CR> to exit): 1

Display log information.

View display options are:

-a analyst Display logs owned by specified analyst

-d date Display logs updated since the specified date (MM/DD/YY)

-k string Display logs with string in the brief description.

-p options Print options:

a - audit trail c - comments

d - full description f - all options

g - general information s - solution

-s statuses Display logs with specified statuses. Options are:

r - received a - assigned

s - scheduled c - closed

-u user Displays logs submitted by specified user

$ ocms -c view [-a analyst] [-d date] [-k string] [-p acdfgs]

[-s rasc] [-u user] [logl, ...]

Enter display options and log number[s]: -pf 1311

Figure 7. Menu display from OCMS.
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1311 cardo Reported operand range error in OCMS during reopen.

Submitter: cardo Status: Closed Category: In-house S/W

Date/Time Submitted is: Thu Dec 5 12:51:56 1991

Implementation Date: 12/05/91

DESCRIPTION:

An operand range error was received during reopening of

log 1305.

COMMENTS:

Thu Dec 5 12:53:46 1991 Comment added by: cardo

Initial investigation shows that the core file produced contains

a lot of invalid information, making it very difficult to obtain

any information from it. Also it appears that the error may have

occurred during mail notifications of the transaction.

SOLUTION:

A formatting problem was found in module reopenlog.c for ocms.

An sprintf was using a string format for an integer field. This

caused the allocated buffer for the sprintf to be overrun and

destroy some neighboring information.

The original source line was:

(void) sprintf(printmsg,"Log %s reopened.\n",lognumber);

The new source line is:

(void) sprintf(printmsg,"Log %d reopened.\n",lognumber);

The same conditions were applied to the test ocms system in order

to reproduce the problem. The problem appears under some very

specific conditions within OCMS which is probably why it was not

detected during the test phases of OCMS.

The problem has been corrected and a new version of ocms installed

for use which corrects this problem.

Solution Reviewed by: Dan

- USER IMPACT:

Users of OCMS will no icunger encounter this problem.

- OPERATIONS IMPACT:

None

- SYSTEM IMPACT:

None

AUDIT:

Thu Dec

Thu Dec

Thu Dec

Thu Dec

Thu Dec

5 12:53:28 1991

5 12:55:36 1991

5 15:20:31 1991

5 15:20:43 1991

5 15:20:46 1991

Log entered by: cardo

Comment added by: cardo

Solution added by: cardo

Schedule added by: cardo

Implementation scheduled for 12/05/91

Closed by: cardo

.... End of log 1311 ....

Figure 8. Full view of an OCMS log.
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SUMMARY

As the usefulness of our change management system grows, we are also encountering new ways

to utilize its features. Tracking tasks through the OCMS has helped in managing analysts' time. The

information stored in the logs has been helpful in resolving new problems. And User Services

continually use this information to keep abreast of the system changes that may affect the users.

The OCMS users continue to request new features. New requests include a host name, machine

type, and level of criticality for each problem, multiple categories for a problem, and automatic noti-

fication to the problem submitter of comments added to a log. Management reports have also been

requested from this system, in particular, reports that summarize categories of problems and the time

it takes to resolve problems.

But, although we have provided a mechanism which addresses our primary goals (documentation

of problems, review of changes, and notification of changes), the most difficult requirement for

attaining these goals is ensuring that all users utilize this tool. Too often the documentation aspects

of OCMS are avoided. As one author states,

Moans and groans come as soon as that word is mentioned. That dreaded pain acts

up in the lower posterior; the activity that is so easily put off until we have abso-

lutely nothing else to do; the most boring part of a technical person's life--

documentation. But it is one of the more important aspects of Change

Management (ref. 6).

And similarly, providing an inviting, informative, and easy to use change management system is one

of the most important challenges for a change management designer.
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SUMMARY

As this country prepares for exploration to other planets, the need to understand the affects of

long duration exposure to microgravity is evident. The National Aeronautics and Space

Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible

for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in

this responsibility is the training of those individuals who will be conducting the experiments during

flight, the astronauts.

Preparing a crew to conduct such experiments requires training protocols that build on simple

tasks. Once a defined degree of performance proficiency is met for each task, these tasks are

combined to increase the complexity of the activities. As tasks are combined into in-flight

operations, they are subjected to time constraints and the crew enhances their skills through

repetition. The science objectives must be completely understood by the crew and are critical to the

overall training program. Completion of the in-flight activities is proof of success. Because the crew

is exposed to the background of early research and plans for post-flight analyses, they have a vested

interest in the flight activities. The salient features of this training approach is that it allows for

flexibility in implementation, consideration of individual differences, and a greater ability to retain

experiment information. This training approach offers another effective alternative training tool to

existing methodologies.

INTRODUCTION

The Space Life Sciences Payloads Office at NASA's Ames Research Center (ARC), is

responsible for the development and operations of non-human Life Sciences research performed

aboard the Space Shuttle. Experiment proposals are submitted to NASA by Investigators from the

research community. Selected experiments are then developed by NASA for performance aboard the

Space Shuttle. Once experiments are identified and manifested for a mission, the next important step

is the training of flight crew to perform the experiments to be flown.

The objective of this paper is to describe the training approach used by the Ames Research

Center Space Life Sciences Payloads Office to prepare payload crew for non-human life sciences

experiments. Using a systems approach, the project office optimizes personnel and crew time within

the constraints of mission schedules, equipment availability, and funding. What follows is a detailed

description of the process used to train the crew, the documentation requirements, certification and
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final validationof operation.This approachto crewtraininghasbeensuccessfulin trainingcrewson
Spacelab-3andmostrecentlyon STS-40,theSpacelabLife Sciences-1(SLS-1)Mission.

CREW TRAINING FLOW

In order to prepare crew members for successful performance of the in-flight science objectives

and tasks for each payload, critical tasks must be separated and identified in such a manner as to

distinguish the discrete skills and knowledge required to perform. Training activities are aligned with

the experiment objectives. To facilitate training, an experiment is divided into experiment sessions,

which are related to the experiment objectives identified in the experiment requirements documents.

Each session is then divided into distinct training modules. Modules are further divided into

procedures and then into the smallest operational elements, procedural steps (fig. 1).

Training activities for all crews assigned on Space Shuttle missions are developed such that the

various procedural elements flow with the training components, specifically Mission Dependent

Training. Crew training for space life sciences payloads is managed as part of the overall Mission

Dependent Training.

Mission Dependent Training on Life Sciences Payloads is divided into timed phases: Orientation,

Task, Phase, Project Integrated, Mission Integrated, and Proficiency Training. Every component of

each experiment and associated hardware is subject to the same basic training template (see fig. 2).

This approach provides an ideal working model as each successive training session builds

knowledge gained from the previous training session until proficiency on the integrated payload

procedures is achieved. What follows is a description of each component of the training process, and

how it is integrated into the in-flight operations.

Orientation Training

As part of Orientation training, the crew gets briefed on all aspects of the in-flight activities, as

well as pre- and post-flight ground activities. This is an opportunity for the crew to gain a full

understanding of the overall objectives to be accomplished as part of the mission. The in-flight

activities are justified to the crew, which gives them an opportunity to relate to the various aspects of

our activities, and help them fully understand the ramifications of the successful performance of the

hardware. The training may take place at Ames or in the Principal Investigator's (PIs) laboratory. In

the case of SLS-1, the crew's orientation at Ames Research Center consisted of a briefing of our

experiments and orientation to our complement of rack mounted hardware (i.e., Research Animal

Holding Facility, General Purpose Work Station and Small Mass Measurement Instrument), other

associated hardware, and the middeck stowed Animal Enclosure Modules. They also received

experiment orientation at PIs' labs for the Jellyfish Experiment and the Cardiovascular animals. For

SLS-1, approximately 47 training hours were accomplished for each crew member during this

interval of training.
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Task Training

During task training, the payload crew becomes proficient in all aspects of the experiment

objectives through intensive and in-depth lectures on Experiment Unique Hardware (EUH), stowed

items, discussion of procedures, and thorough hands-on training with specimen and available

experiment hardware. Task training is often accomplished together with orientation training.

Sometimes a training session is offered at two different times so that every crew member can be

exposed to the same material. In this way, we are able to cross-train each payload crew member.

Phase Training

This portion of training is designed to allow the crew the opportunity to complete enough

repetitions of the experiment so the crew member is able to complete the experiment procedures at a

def'med level of time proficiency. Training utilizes the experiment operating procedures, payload

specific hardware, and stowage items. This training opportunity also provides the crew with a level

of proficiency which would guarantee a meaningful participation in the Experiment Verification

Test, scheduled during the next phase of training.

For SLS- 1, the crew logged approximately 37 hours during this portion of the training.

Project Integrated Training

The objective of crew training during an Experiment Verification Test is to conduct project

integrated training of the payload crew members. Crew members must perform all ARC in-flight

activities while assisting in validation of the SLS- 1 timeline. The crew must be trained ahead of time

in the tasks necessary to support these various experiments. Although the crew is familiar with the

payload, this test is usually the first time they combine the tasks into operational procedures using

flight hardware and stowage items.

For the SLS- 1 Mission the crew participation covered approximately 40 hours of the total

72 hour execute shift. Crew participation was scheduled such that the crew witnessed and

participated in the major in-flight activities and received systems and malfunction training during
hours outside of the EVT timelined events. The verification test allows for evaluation of the

1-G timeline and also allows validation of the in-flight procedures as written for the hardware

configurations and science requirements known at the time.

Mission Integrated Training/Simulations

Mission Integrated Training/Simulations is two fold; it allows the crew to develop their

proficiency to a level of performance where they can successfully perform all the payload activities

within the mission timeline and also allows the Payload Operations Control Center (POCC) cadre

and PED support the opportunity to rehearse in-flight ground protocols. It is similar to project
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integratedtraining,but includestimelineperformanceof all mission experiments and other activities

necessary to carry out the mission. This training occurs within a fully integrated spacelab mockup.

Locations for stowage hardware are finalized, locker foam is included, and the stowage hardware

is integrated into the respective locations with the mockup. Procedure validation, designation of

velcro mapping, and timelining are important elements of this phase of training. Flight

documentation in various stages of development is normally used by the crew to support these

simulations. In addition, the crew uses Spacelab and Orbiter equipment, consumes food to be

supplied during flight, and dresses as they would during the actual flight.

During this phase, it is recommended that additional proficiency training be conducted on critical

operations, this includes nominal as well as malfunction training.

The SLS-1 payload had the unique opportunity of participating in ten simulations with the POCC

cadre. In addition 5 Joint Integrated Training/Simulations were scheduled with POCC Cadre at

MSFC, mission control personnel at JSC, and the crew traveling between the spacelab mockup, the

middeck mockup and the shuttle simulators. Each of these training opportunities simulates different

start and stop times on the overall mission timeline.

DOCUMENTATION REQUIREMENTS

Working on a shuttle experiment involves a large number of people, working at different

locations on a variety of activities. Crew training activities involve crew members, generally in

Houston; mission management personnel, either at Johnson Space Center or Marshall Spaceflight

Center; principal investigators, located throughout the United States, and project personnel and

hardware, located at ARC. Publication and timely distribution of documentation are the most

effective methods for coordinating information with personnel in multiple locations who engage in

widely differing activities. Training documentation required for all ARC Space Life Sciences

Payloads includes:

Crew Training Plan

This document describes in detail the content of the ARC training and how it will be conducted

for a particular mission. It defines the number of hours required to achieve proficiency and

subsequent flight performance. It describes the training approach and objectives. In addition, the

project crew training plans will include appendices which address the following:

Experiment Summaries

Payload Training Requirements

(by level: Orientation/Task, Phase, Project Integrated, Mission Integrated, etc.)

Documentation Requirements Schedule

Flight Crew Training Schedule

The Crew Training Plan should be issued at the launch minus 24 to 18 month timeframe.
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Milestones for Scheduling

When planning crew training, there are a number of milestones that must be accomplished before

the training session can begin. Some are generic requirements and others are specific to the

individual experiment or payload. These should be included in each project's sub-tier schedule for

crew training. The following lists those generic milestones that are ordinarily included in a crew

training sub-tier schedule:

Workbook/Familiarization Manuals Completed and/or Procedure update completed (include

draft, review and signature cycle)

Room Logistics (Schedule conference rooms, labs or high bay)

Visitor Requirements

Public Information Office (PIO)/photo involvement

Training Agenda

Input from PI (for Orientation/Task Training)
To Crew

Final to Project Office

Hardware Readiness (Individual hardware items that are needed for training)

Readiness Reviews (1-2 weeks prior)

Training Session Dry Run (1 week prior)

Actual Training Sessions

Crew Debriefing after each training session

Project Debriefing

Familiarization Manual

This document provides background material that is useful for crew orientation. The manual

summarizes the goals of the mission and describes each of the payload experiments and all

associated hardware. Each manual is controlled under configuration management. This manual is

usually distributed one month before the payload orientation session.

The basic format for a familiarization manual is as follows:

• Cover Page

• Table of Contents

• Background to particular mission

• Experiment Descriptions

• Experiment Hardware Descriptions - including labelled drawings and or

photographs

Crew Training Workbook

A Crew Training Workbook is developed for each experiment or test to be flown. The workbook

gives much more detail about each experiment than does the Familiarization Manual and is used by
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thecrewasanorientationof the in-flight procedures,asareferenceduringhands-ontrainingandas
apost-trainingrefresher.Eachworkbookis assigneda controlnumber,andsubsequentrevisionsare
madeby theCrew TrainingOffice. Workbooksaredistributed2-4weeksprior to experimenttask
training.

Thebasicformat for the workbookis asfollows:

• CoverPage
• ForwardPage- which includestheinstructor's (principal investigator),address,

phoneandgeneralintroductionstatements
• Tableof Contents
• AcronymsandAbbreviations
• ApplicableDocuments
• LessonIntroduction- coversthereasonfor theexperiment,background,past

research,rationale,methodology,expectedresults,references,andsummaryof
Experiment-UniqueEquipment.

• LearningMaterial - thebulk of theworkbook, includesin-flight procedures
• Appendices- mayincludeapplicablePI publications

Dependingon thecomplexityof theexperimentsor thepayload,it maybenecessaryto combine
theFamiliarizationManualwith theCrewTrainingWorkbook.In suchcases,it will becalleda
Workbook/FamiliarizationManual.

Procedures

There are two categories of procedures: (1) Ground Experiment Operating procedures which

detail experiment tasks, and (2) Experiment Operating procedures which are performed in flight.

Ground Experiment Operating procedures are detailed experiment specific laboratory procedures

which are learned during task training. They may be more detailed or may be the same as experiment

operating procedures. They may include specific specimen handling practices, surgical operations,

materials processing and operation of experiment unique flight hardware. They are defined by the PI

and other members of the experiment team and are part of the experiment workbook. They will be

provided to the crew with workbooks.

Experiment operating procedures are discipline (experiment) oriented; they are performed in-

flight. They may be the same as a ground operating procedure or they may involve several integrated

experiment procedures which utilize an animal. They may also involve common hardware.

Payload Flight Data File

A portion of the Payload Flight Data File (PFDF) is an outgrowth of the nominal in-flight

procedures used in the training workbooks and is revised during and after each training session. It

develops with the crew's experience on the various experiments, hardware items, etc. The crew
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proceduresareupdatedaftereachtrainingsessionsothatprior to ProjectIntegratedtraining, the
experimentproceduresareconvertedto thePFDFformat (theproject's preliminaryversion).With
eachrevision, theproceduresarereducedfrom adetailedto achecklistformatandrequiresinput
from thecrewastheybecomemoreproficient in theexperiments.Theotherportionof thePFDF
consistsof malfunctionprocedures.Theseproceduresarealsorevisedafterbeingvalidated,whether
throughhardwareverificationor crew training.Thenominalin-flight procedures,togetherwith
malfunctionprocedures,constituteasmallportionof thePFDF.ThePFDFconsistsof all
documentationflown duringaflight. This includesorbiterandpayloadnominalandmalfunction
procedures,referencedocumentsandflight rules.

Theby-productsof MissionDependantTrainingaredocumentedin thefollowing PayloadFlight
DataFile documents:

ExperimentProcedureReferenceBook
ExperimentProceduresChecklist
StowageBook
ExperimentMalfunctionProcedures
SpacelabPhoto/TVChecklist
PayloadSystemsHandbook
PayloadCrewActivity Plan
SpacelabActivate/DeactivateChecklist

The final PFDF is a mission-produced document composed of project submittals.

CREW EVALUATION AND CERTIFICATION PROCESS

The evaluation and certification of crew members in the performance of experiment operations

progresses through each training level in a building block fashion. The goal of training is to teach.

The intent of crew evaluation is to identify areas where the training should be revised, improved or

repeated. Each crew member has an important responsibility in this process. Evaluation and

certification of crew proficiency in performing payload operations starts with the PI at the first level

of training, moves on to the project level during phase and/or project integrated training and is

finally completed by the mission manager after Joint Integrated Training Simulations (JITS).

Crew Evaluation

The following are suggested criteria to be used when evaluating crew proficiency:

1. Completion of all training documentation.

2. Completion of number of required training hours.

3. Demonstration of payload operations during task, phase, and project integrated training.
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4. Demonstrationthatpayloadoperationsconformto predeterminedtimeframe.

5. Demonstrationof understandingthatexperimentmeasurementsandsamplesarein normal
range.

6. Resultsof nominal,off-nominal, long duration,andjoint integratedtrainingsimulations.

ThePI is responsiblefor completionof atraining report(seeAppendixA) for eachcrewmember
following thecompletionof orientation/tasktraining.Eachcrewmemberis alsoresponsiblefor
identifying additionaltrainingdesiredby completingquestions5 and6 of theARC ProjectCrew
Evaluationform (seeAppendixB).

IN-FLIGHT ACTIVITIES

After the crew supports the above training schedule, the fruits of their labor are witnessed as they

conduct the in-flight activities on POCC console monitors and NASA Select television (figs. 3-9).

The activities are generally performed as rehearsed during training, keeping the science constraints,

flight rules, and hardware limitations in mind, adapting their skills and knowledge of the

experiments to the zero-g environment. The actual results of the experiments is the validation of

successful training.

CONCLUSION

While the project goals in support of a mission are generally assumed to be the delivery of

hardware and its subsequent integration, an integral portion of flight development includes ensuring

the prime operators of the experiments are fully versed in all its operations.

Effective crew training is crucial to the successful completion of in-space life sciences

experiments. Ames Research Center has developed and utilized a training process that assures proper

exposure of crew members to all aspects of experiment protocols and prepares them for proper

implementation of these experiment protocols in space (ref. fig. 2).

The ability of the crew to perform the in-flight procedures, to respond to hardware anomalies, as

trained, and to speak knowledgeably of the experiments at briefings can be considered the validation

of a successful training program.
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APPENDIX A

ARC PROJECT TRAINING REPORT

EXPERIMENT NAME/NO.:

TYPE OF TRAINING:

DATE:

TIME UTILIZED TO COMPLETE SESSION:

1. I certify that

successfully completed the above training session.

2. PI Comments:

has

a. Accomplishments during training:

b. Tasks requiring additional practice/training

c. Recommendations for future training sessions.

Principal Investigator Date
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APPENDIX B

ARC PROJECT CREW EVALUATION

EXPERIMENT NAME/NO.:

TYPE OF TRAINING:

LOCATION OF TRAINING:

DATE:

1. Was training documentation provided in sufficient time to allow for adequate
preparation for training?

Yes

No; explain

2. Were training resources such as training documentation, procedures, hardware,
and facilities adequate?

Yes

No; explain

. Was time used efficiently during training?

Yes

No, explain

. Was the time allocated for training:

Too long: explain

Correct

To short; explain
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ARC PROJECT CREW EVALUATION

Page 2

5. Do you feel the training activities have prepared you to perform the required
tasks?

Yes

No; explain

6. Identify any additions, deletions or modifications to training and/or training
resources (hardware, procedures, facilities, etc.).

7. Other comments?

Crew Signature (optional)
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Figure 3. Mission Specialist Rhea Seddon during orientation training of small mass measurement 
instrument. 

Figure 4. Payload Specialist Millie Hughes-Fulford during laboratory orientation training. 
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Figure 5. Mission Specialist Jim Bagian examining jellyfish specimen during jellyfish task training. 

Figure 6 .  Mission Specialist Rhea Seddon and Payload Specialist Millie Hughes-Fulford during cage 
transfer phase training. 



Figure 7. Project hardware configuration during payload experiment verification test. 

Figure 8. Ms. Rhea Seddon at general purpose workstation during EVT. 
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Figure 9. Payload Specialist Drew Gaffney and Mission Specialist Rhea Seddon doing cage transfer 
procedure during mission integrated simulation. 

BIOGRAPHY 

Annette T. Rodrigues started her Federal career with the Naval Radiological Defense 
Laboratory in 1968. Over the years she has acquired a vast array of experience in such areas as 
Government Procurement, Human Resources, Personnel Development, Spaceflight (experiment) 
Crew training and various Project Management functions. Her project experience at Ames Research 
Center has included work on the Biosatellite III and Spacelab Life Sciences Missions (SL-3, SLS- 1, 
SL-J & SLS-2). 

Currently Ms. Rodrigues is the staff assistant to the Center Deputy Director. In this capacity she 
serves as advisor and special assistant to the Deputy Director of the Center. As the Deputy Director’s 
representative, she is responsible for the continuous review and analysis of institutional activities and 
policies. As the prime interface with the Deputy Director, she provides administrative advice and 
direction to his staff offices, including the offices of the Chief Counsel, Safety, Reliability, and 
Quality Assurance, Equal Opportunity and External Affairs. 

Ms. Rodrigues received her BS degree in Business Administration from San Jose State 
University (1976) and an MS degree in Systems Sciences from University of Southern California 
(1987). 

Christopher Maese graduated from the University of Santa Clara in 1980 with a B.S. in 
Biology, then earned an M.A. in Biology, specializing in physiology, from San Jose State Univer- 
sity. Since 1988, he has worked in the Space Life Science Programs Office at Ames Research 
Center. 

128 



N95- 11965
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A NEW INSTRUMENT FOR SPACE RESEARCH

Julie E. Schonfeld and John W. Hines
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INTRODUCTION

The Rhesus Research Facility (RRF) is a research environment designed to study the effects of

microgravity using rhesus primates as human surrogates. This experimental model allows investiga-

tors to study numerous aspects of microgravity exposure without compromising crew member

activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3,

due to fly in late 1995. The RRF is a joint effort between the United States and France. The science

and hardware portions of the project are being shared between the National Aeronautics and Space

Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES).

The RRF is composed of many different subsystems in order to acquire data, provide life

support, environmental enrichment, computer facilities and measurement capabilities for two rhesus

primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement

System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors

interfaced with the subject. The RMS will acquire, pre-process, and transfer the physiologic data to

the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be

taken by the RMS during the fh'st flight will be respiration, measured at two different sites; electro-

myogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG);

and body temperature. These measurements taken by the RMS will assist the research team in

meeting the science objectives of the RRF project.

THE SCIENCE OBJECTIVES OF THE RRF

The science experiments of the project will be performed by a team of U.S. and French principal

investigators (P.I.) studying the effects of microgravity in the following areas: behavior and motor

performance; muscle and bone physiology; calcium homeostasis; immunology/microbiology;

cardiopulmonary, regulatory, and neural physiology.

During the mission, the subject will occupy his daylight hours by performing tasks on the

Psychomotor Test System (PTS). The PTS consists of a monitor, a joy stick, and a number of pre-

programmed tasks that the subject performs. The tasks involve maneuvering a pellet through a maze,

similar to that of several video games. Successful completion is rewarded with a food pellet. Behav-

ior and motor performance will be evaluated through the use of the PTS and the Activity Video

System (AVS). Basically, the AVS is a video camera and image processing system which will record

the subject's actions during the flight. The scientists will integrate the data recorded from the PTS
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andtheAVS to studytheprimate'seye-handmotorskill, reactiontime, perceptionanddiscrimina-
tion, targetprediction,attention,memory,andability to learn.Theseresultswill becomparedto pre-
andpost-flight testingto determinehowexposureto microgravityaffectedthesecharacteristics.

Severalaspectsof muscle physiology will be studied. The research team will examine pre- and

post-flight EMG patterns, using the AVS system to coordinate EMG activity with muscle movement.

Muscle biopsy samples will be extracted pre- and post-flight and evaluated for biochemical changes

due to microgravity exposure. The research team will examine muscle contractile protein alteration,

myosin changes in muscle fibers, and ultrastructural remodelling of the muscle-tendon and muscle-

nerve interfaces. The investigators will characterize the physiological mechanisms responsible for

any observed changes due to microgravity.

To aid the research team, the RRF will be a closed biological system: all inputs and outputs will

be quantified and qualified; food and water intake, electrolyte intake, urine output, and feces volume.

Utilizing this closed system, the investigators will gain insight into calcium regulation, fluid and

electrolyte shifts, hormonal responses, and temperature regulation.

Bone morphology studies will include pre- and post-flight bone biopsy samples, bone density

measurements, and bone marrow samples. These observations will help determine if changes in bone

calcium regulation (release/resorption) occur upon exposure to microgravity, and if so, whether these

changes lead to modified bone cell activity and/or bone synthesis.

Fluid, electrolyte, and hormonal shifts are known to occur in human subjects upon exposure to

microgravity within the cardiopulmonary system. The RRF will collect data on heart rate, pulmonary

gas exchange kinetics, respiration rate, tidal volume and fluid volume shifts via ECG and abdominal

and thoracic respiration. This information will allow investigators to quantify the magnitude of

regulatory changes within the cardiopulmonary system.

Within the environment on the space shuttle, it is not possible to completely separate the life

support systems of the animals and the astronauts. Therefore, it is necessary to assess the cross

contamination of micro-organisms between the humans and the animal subjects, and any subsequent

immune response. Cultures will be collected from both groups and susceptibility to antibiotics will

be assessed as well as lymphocyte proliferation. Modification of intestinal microflora and fermenta-

tion will also be studied as a part of the immunology-microbiology discipline.

Space Adaptation Syndrome (SAS) is a problem encountered by many astronauts and may affect

the ability of man to inhabit space for any significant length of time. The RRF will examine ECG

and EEG data, correlated with PTS and AVS activity, to study the neurophysiological responses and

potential mechanisms associated with SAS.

THE RHESUS MEASUREMENT SYSTEM

The RMS has several different components. Functionally, the RMS is composed of sensors,

which interface to the subject; the Respitrace subsystem, which interfaces directly with the respira-

tion sensors; the biotelemetry subsystem; the signal conditioning unit, a digital sampling and
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memorystorageunit, andapowersupplymodule.Thebiotelemetrysubsystemis areceiverfor an
implantedtransmitterwhich measuresECGanddeepbodytemperature.Thebiopotentialsignal
sensorsfor EEGandEMG interfacedirectly to thesignalconditioners.

Physically,thesystemis comprisedof four differentunits: theBiotelemetrysubsystem,the
Respitracesubsystem,theAnimal AnalogSignalConditioner,andthePowerSupplyModule.The
configurationof the RMS can be seen in figure I.

The Biotelemetry subsystem, referred to as Experiment Unique Equipment-1 (EUE-1), is one

unit. The subsystem consists of a receiver, EUE-1, and the implanted transmitter. This transmitter

contains the sensors which measure ECG and body temperature. ECG is measured with bio-potential

leads attached across the heart. Body temperature is measured with a thermocouple. These readings

are then modulated on to bursts of a 455 KHz signal which is then demodulated into the different

signals and passed on the AASC for f'mal signal conditioning. Because of the low power implanted

transmitter, the receiver must be located close to the subject. Therefore, EUE-1 is mounted under the

primate's left armrest.

The Respitrace Subsystem consists of EUE-2, and the respiration sensors, called the Respibands.

The Respitrace utilizes inductance plethysmography to measure volume shifts in different parts of

the body. This is implemented by the two Respibands, which are used to measure the respiration rate

of the primate, and additional circuitry. The two Respibands, one placed around the thoracic region

and the other on the abdominal region, are composed of a wire sewn into an elastic band in a zig-zag

fashion. The bands each act as a single turn inductor which, when expanded and contracted, cause a

change in inductance proportional to the circumference changes caused by respiration. Each inductor

completes a phase-lock-loop oscillator circuit, creating a frequency shift proportional to the induc-

tance change. A frequency to voltage conversion circuit then produces a voltage output analogous to

the inductance change. The outputs of the Respitrace are further conditioned by a card located within

the AASC. EUE-2 must also be close to the subject because it is connected to the Respibands. The

unit mounts underneath the fight armrest of the primate's chair.

The AASC houses the signal conditioning cards, the digital system, and two power cards. This

unit has been the most complicated piece of the RMS to develop. While the AASC will provide

8 channels of data during its first mission, it is designed to accommodate up to 16 channels. The

AASC is configured into 7 signal conditioner cards, 3 digital system cards and 2 power cards

mounted into a single backplane. Because of a 180 x 240 x 70 cm envelope enclosure restriction,

surface mounted components have been used in the design. The AASC is mounted on the wall

behind the rhesus compartment. The signal conditioners must be located fairly close to the low level

signals it receives in order to reduce noise induced on the lines. Table 1 gives the characteristics of

all the cards in the AASC.

The signal conditioner cards in the AASC filter the signals into appropriate bandwidths and scale

them to a 0-5 Volt signal. There is one signal conditioner card for each physiological signal except

the respiration measurement, which has a dual respiration signal conditioning card. The signal

conditioner cards also contain calibration circuitry to allow for in-flight calibration of the circuits and

to optimize measurements for each particular subject. The AASC has been designed as a modular

system. Signal conditioner cards are interchangeable. The modular design allows new signal
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Table 1. AASC board characteristics

Bo_d Input level Gain range Offset range Filter range

(v) (v) (Hz)

EMG .1 - 10 mV 400 to 40,000 2.5 nominal 2 to 1000

EEG

TEMP

ECG

Dual

RESP

PWR

Cond

PWR

ISO

Micro-

controller

Micro-

peripheral

Memory

.01 - 10 mV 400 to 40,000 2.5 nominal 1 to 100

0 - 1 V 0 to 100 2.5 nominal Low pass
1 Hz

1 V P-P 1,2,5,10,20, 50, 100 2.5 nominal 0.05 to 100

1 V P-P 1,2,5,10,20,50, 100 2.5 nominal Low pass

10 Hz

+ 8.5 V N/A N/A N/A

± 8.5V N/A N/A N/A

68HC11 Microcontroller, provides parallel control ports to cards: 8 ch., 8 bit

A/D converter, RS-232 Serial Communications Port

Provides control for the memory plus battery backup for memory

> 2 Mbytes 8 bit SRAM Memory

conditioner cards to replace the originals so that new measurements can be collected in future flights

without a complete redesign of the instrument. Also, this allows the hardware to be used for ground-
baled research.

The power cards and the digital system cards are fixed in the AASC. The first power conditioner

card further regulates the output of the Power Supply Module and routes it to the power isolation

card. The power isolation card prevents a shock hazard to the subject by generating a floating power

supply for the biopotential signals (EEG and EMG) which are directly connected to the biopotential

signal conditioning cards. To prevent shock originating from direct short circuits to the isolation

power card, there is a high input impedance between the probes and the signal conditioning card,

which severely restricts current flow.

The digital system provides the AASC with the ability to acquire and store data during the ascent

and descent phase of the flight. During that time, power supplied to non-critical hardware in the

shuttle must be kept to a minimum. The Flight Data System requires much more power than the

RMS alone; therefore, during those phases the RMS must store the data. The data will be down-

loaded to the FDS in flight when it comes on line. The digital system consists of a microcontroller

card, a memory card containing at least 2 megabytes of memory, and a memory controller card.
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Thedigital systemgivestheAASC considerableflexibility. Throughthesoftwarestoredin the
microcontrollercard,thesystemhasthecapabilityto adjustgains,offsets,andsampleratesand
provideacalibrationandoperatemodefor eachdifferent signal.Becauseof the limited memorydue
to sizeconstraints,differentsamplingscenarioshavebeendeveloped.Thesescenariosareoutlinedin
table2. Thesescenariosallow theresearchteamto optimizethedataavailableto themduringascent
anddescent.In EEGandEMG, with abandwidthof 1000Hz, thereis muchinformation to be
gainedat ahigh samplingrate.However,to do sowould requirelargechunksof memory.Thecom-
promiseis to samplehighfidelity datafor 10secondsof eachminuteon two channelsof EMG, and
1minuteoutof every2 hourson theotherEMG channel.

Table 2. RMS Digital System Sampling Scenario

Parameter Ascent

Duty cycle sample rate

(Hz)

Descent

Duty cycle sample rate

(Hz)

ECG N/A N/A

Heart rate 60 sec .2

Body temp 60 sec .2
EMG1 50 sec/6 min 50 50 sec/8

10 sec/6 min 1000 10 sec/8

EMG2 50 sec/6 min 50 50 sec/8

10 sec/6 min 1000 10 sec/8

EMG3 N/A 1 min/2

1 min/2 hr 2000 1 min/2

EEG (Undecided)

Respiration (abdominal) 1 min/3 min 20 1 min/2

Respiration (thoracic) 1 rain/3 rain 20 1 min/2

min 50

min 1000

min 50

min 1000

min 50

hr 2000

min 20

min 20

The Power Supply Module (PSM) is the fourth element of the RMS. The PSM receives power in

the form of +28 Volts from the Shuttle's Experimental Power Switching Panel (EPSP). Utilizing DC

to DC converters, it then converts it to the +8.5 volts necessary to power the AASC. As required by

Shuttle, the PSM has a large inductor on the front end to smooth voltage transients up to twice the

nominal value of the supply. The Power Supply Module, which does not require close proximity to

the AASC, is mounted in a separate rack.

FLIGHT HARDWARE REQUIREMENTS

In addition to the electrical requirements, the hardware must prove to be rugged and safe in order

to be certified for flight on the Shuttle. The primary requirement is that the hardware must not com-

promise the safety of the crew or the study subjects. Further, the hardware must be able to withstand

moderate vibration, possible pressurization and depressurization, and temperature fluctuations with-

out flying apart or exploding. Materials used in the instrument must not offgas chemicals into the
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shuttleenvironmentandmustnotbe flammable.Thesystemmustnot radiateelectromagneticinter-
ference(EMI) which mightdisruptShuttlesystems.A secondaryrequirementis that, subjectto all
theseconditions,thehardwaremustfunctionproperly.Electricalcomponentsmusthavethehighest
reliability availableandmechanicalcomponentsmustmaintaintheir integrity.

Thesystem,therefore,is subjectto rigorousanalysisandtestingregimesto verify it is qualified
for flight onShuttle.Analysesareperformedto showit will withstandpressurizationandto showa
sufficientnumberandsizeof fastenersareusedto mountcomponents.ThevibrationandEMI tests
performedon thehardwaredemonstratethattheRMS will notcomeapartandit will not interfere
with otherShuttlesystems.Materialsusedin thesystemmusthavebeenindividually evaluatedfor
suitability in spaceareratednon-toxic,particularlywith regardsto flammabilityandoffgassingin
non-metallicparts.SincetheRMS utilizessurfacemountedcomponents,arelativelynew flight
hardwaretechnology,theelectricalcomponentswill facecardlevel testingbeforeflight. Thecards
will besubjectto temperaturecycling andvibrationtests.This is in additionto thenormal
qualification testingsequence.

Anotherimportantrequirementof theRRFisthat it not contaminatethecrewcabinwith animal
odorsor particles.TheRMS fulfills thisrequirement,becausetheAASC mountsona surfacewhich
is aninterfacebetweentheanimal'schamber,theEnvironmentalSystemfor Orbiting Primate
(ESOP),andthecrewcabin.Thus,theAASC is attachedwith agasketthatprovidesanairtight seal.
Theintegrity of thesealis testedfor aspecificleakrate.Theinterfacegasketon theAASC also
suppliesa continuouselectricalconnectionto theESOPtherebyproviding acompleteEMI shield.

TheRRFhasalsodevelopeda"powercontract"with theshuttlelimiting themaximumpower
theRRFmayconsumeat all timesduring themission.Poweron theshuttleis limited andtherefore,
is doledoutcarefully,particularly duringascentanddescent.TheRMS hasbeenallocated20Watts
for the durationof themission.Theuseof low powerandCMOSsurfacemountedcircuitry provides
theRMS with atremendousadvantagein beingableto accomplishthescienceobjectivesof theRRF
well underthis powerrestriction.

THE FUTURE

The RMS was designed to support the science objectives of the Rhesus Research Facility, but the

system's capabilities extend beyond this mission. The surface mounted components utilized in the

RMS will continue to pave the way for future flight hardware design, especially given the size and

power restrictions on the Shuttle. The configuration of the RMS also allows the incorporation of

hybrid technology which would further expand its capabilities. With instrumentation being so costly

to develop, it is well worth our efforts to design hardware which can be used over again. With its

versatile design, the RMS can implement new measurements accommodating many different kinds

of science research, both ground-based as well as in space.
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SUMMARY

From salt sediments of Triassic or Permian age from various locations in the world halophilic

microorganisms were isolated. Molecular characteristics of several of the isolates suggested they

belong to the archaebacteriae. One group appears to represent novel strains; several properties of one

such isolate, strain BIp, are described here.

The existence of viable microorganisms in ancient sediments would have great implications with

respect to our notions on evolution, the search for life in extraterrestrial environments and the long-

term survival of functional biological structures. Of crucial importance is thus the question if these

microorganisms existed in the salt since the time of deposition or invaded at some later date. Some

suggestions to address these issues experimentally are discussed.

INTRODUCTION

In all parts of the world salt deposits are found which originate from early periods of the geologi-

cal history of the Earth. The major such halogenic epochs occurred during the Paleozoic period

(Zharkov, 1981). Particularly large sediments were deposited during the Permian and Triassic era,

that is, 280 to 195 million of years before present. Microscopic examinations revealed the presence

of bacteria in thin sections or dissolved rock salt samples (see Sonnenfeld, 1984 for references).

Rather sensational were the claims about thirty years ago that bacteria from Permian or older salt

sediments had been brought back to life (Dombrowski, 1963; Reiser and Tasch, 1960). Other work-

ers could not confirm these findings (Bien and Schwartz, 1965). Recently, extremely halophilic

bacteria were isolated from an English salt mine, whose deposition appears to have occurred during

the Triassic period (Arthurton, 1973). The rock salt samples had been collected right after blasting,

and care was taken to exclude any extraneous microbial contamination (Norton, 1988, 1989). Other

halophilic bacteria were isolated from a Permian age bedded salt deposit located in New Mexico

(R.Vreeland, personal communication). We were able to cultivate halophilic bacteria from rock salt

which was obtained from an Austrian salt mine, also of the Permian period. A preliminary character-

ization of isolates from the English as well as the Austrian salt mines with respect to their antibiotic

sensitivity, ATPase enzymes and cellular proteins has been described (Stan-Lotter et al., manuscript

submitted for publication). The bacterial isolates fell into two classes; one, which resembled known

bacterial strains and one, which did not. Extremely halophilic bacteria belong to the archaebacteria, a

group of microorganisms thought to have diverged early from the main line of prokaryotic evolution

(Woese, 1987). A comparison of known archaebacteria with similar isolates from ancient sediments

might provide a time scale for mutational events, since the bacteria, which were included in the salt
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sediments,havenotevolvedfor a few hundredmillion years,in contrastto all otherliving
organisms.Thesignificanceof viableorganismsfrom paleozoictimeswould,besidesevolution,
extendto otherareasof scientificstudy,for instance,to thesearchfor extraterrestriallife. If it canbe
proventhatbacteriaremainviable in a dry statefor very longperiods,it wouldbe feasibleto look for
remnantsof suchlife forms in sedimentaryformationsonotherplanets,e.g.,onMars.

Hereweextendthedescriptionof propertiesof oneof thenovel isolates,strainBIp, anddiscuss
strategiesto determinetheageof themicroorganismsisolatedfrom rock saltof paleozoicorigin.

MATERIAL AND METHODS

Bacteria and Culture Conditions

Samples of rock salt, with varying contents of clay, were obtained from the salt mine in

Bad Ischl, Austria. Pieces of about 2 g were dipped in ethanol and flamed. Then they were trans-

ferred to 50 ml of sterile complex medium (M2 medium) that was 20% with respect to NaC1 and

whose pH was 7.4 (Tomlinson and Hochstein, 1976) and incubated at 37 °C with shaking. After

about 4 weeks samples of the cultures were streaked on plates containing M2 medium which was

solidified by the addition of 2% agar. Colonies appeared after three to four weeks and were purified

further by repeated spreading on solid M2 medium. One isolate with pink pigmentation was picked

for further characterization and will be referred to as BIp. For some experiments a culture medium

with a pH of about 9.5 was used (Tindall et al., 1980). Growth in liquid culture was monitored with a

Klett-Summerson colorimeter with a red (No. 66) filter. The following archaebacterial type strains

were obtained from the Deutsche Sammlung fur Mikroorganismen (DSM): Halococcus morrhuae

DSM 1307, Hc. morrhuae DSM 1309, Natronococcus occultus, Natronobacterium magadii, Nb.

gregoryi, Nb. pharaonis. Halobacterium saccharovorum (ATCC 29252), Hb. halobium, Haloferax

denitrificans and Hfi vallismortis were obtained from Dr. L.I.Hochstein, NASA Ames Research

Center.

Antibiotic Sensitivity

Paper disks impregnated with the particular antibiotics were placed on agar plates, which con-

tained 20 ml of solid M2 medium and on which 200 l.tl of liquid culture had been spread. Zones of

inhibition around the disks were recorded after 7 days of incubation at 37 °C. Antibiotics were from

Sigma Chemical Company.

Biochemical Tests

Catalase activity was determined by placing a drop of a 3% H202 solution on a lawn of bacteria.

The formation of gas bubbles indicated a positive reaction. Oxidase was detected by spotting a loop-

ful of bacterial culture on a paper strip containing N,N-dimethyl-1,4-phenylendiammoniumchlorid

and naphthol. Blue coloration revealed the presence of the enzyme.
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Gel Electrophoresis

Sodium dodecyl sulfate (SDS) gel electrophoresis of whole cell proteins was performed as

described previously (Stan-Lotter et al., 1989) using the gel system of Laemmli (1970). Isoelectric

focussing (IEF) was done in a pH range of 2.5 to 5.0 and 3 tol0, respectively, as described for

halobacteria (Stan-Lotter et al., 1989). Ampholytes were from Pharmacia-LKB.

Light Microscopy

Cells were examined with a Leitz Diaplan microscope using phase contrast. Photographs were
taken with Ilford film PAN F.

RESULTS

Isolation and Growth Characteristics

Numerous colony types on agar plates were isolated from samples of rock salt, many of them

showing pink or red pigmentation. Some of the isolates from an English and an Austrian salt mine,

respectively, were similar, but not identical, to classified archaebacteria (Stan-Lotter et al., submitted

for publication). Other isolates as represented by strain BIp did not show obvious similarities to

known bacteria. These might be novel isolates of potential great interest. The criteria for the charac-

terization of strains included sensitivity towards antibiotics, possession of certain enzymes such as a

membrane ATPase and properties of whole cell proteins. In the case of one isolate from the English

salt mine, lipid analysis was performed and showed the typical archaebacterial diphytanyl-diether

(Norton, 1988). More detailed data are, however, necessary to decide upon the novelty of bacterial
strains.

BIp grew with a generation time of about 24 h at 37 °C in liquid M2 medium (pH 7.4) with

shaking. It reached the stationary growth phase at about 150 Klett units. Similar growth characteris-

tics were observed when BIp was cultivated in medium of pH 9.5. Ceils from liquid cultures were

coccoid and often growing in tetrads or, particularly in older cultures, in large clusters (see fig. 1).

Growth on solid medium was as irregular colonies of pink pigmentation; older colonies turned to a
brownish color.

Biochemical Characteristics

Table 1 shows the sensitivity of BIp towards several antibiotics. Growth was strongly inhibited

by anisomycin, bacitracin and novobiocin. Moderate sensitivity of BIp was observed against chlo-

ramphenicol and tetracyclin. No inhibition of growth occurred with ampicillin, nalidixic acid and

streptomycin. These results were generally consistent with previous studies of antibiotic sensitivities

of archaebacteria (Hilpert et al., 1981). BIp was catalase positive and oxidase positive.
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Figure 1. Phase-contrast photomicrograph of strain BIp, x 3550. 

Table 1. Effect of antibiotics on growth of strain BIp. 
_ _ _ _ _ ~  ~ 

Concentration Sensitivity 
(pg per disk) 

40 Ampicillin - 

Bacitracin 40 +++ 

Nalidixic acid 40 - 
Novobiocin 40 +++ 
Streptomycin 40 - 

* 

Anisomycin 50 +++ 

Chloramphenicol 40 + 

Tetracyclin 40 ++ 
-, no inhibition; +, ++, +++, zone of inhibition 5 1 mm, * 
- c 3 mm, > 10 m, respectively. 

Gel Electrophoresis of Whole Cell Proteins 

SDS gel electrophoresis of whole cell proteins is a rapid method for distinguishing bacterial 
species (Jackman, 1985). We have used this method to identify wild type strains and mutants Of 

halobacteria (Stan-Lotter et al., manuscript in preparation). Strain BIp showed a unique protein 
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patternfollowing SDSgel electrophoresiswhichdid not resemblethat of anyof thehalobacterial
typestrainswhich we tested(datanot shown).In particular,noneof theknowncoccoidarchaebac-
terial strains(Halococcus,Natronococcus ) were similar to BIp. The 16rotein patterns of strain BIp

were identical, whether the strain was grown at pH 7.4 or pH 9.5.

Extremely halophilic bacteria are known to possess almost exclusively acidic proteins (Reistad,

1970), with isoelectric points ranging between pH 3.6 and 5.0 (Stan-Lotter et al., 1989). On isoelec-

tric focusing gels, strain BIp showed acidic proteins between pH 3.8 and 4.5. The overall protein

pattern on IEF gels was again different from that of any of the archaebacterial type strains (not

shown).

DISCUSSION

Several properties of strain BIp which are described here suggested that it is an archaebacterium.

The sensitivity towards antibiotics (table 1) was similar to that of other archaebacteria and its whole

cell proteins were acidic, as is the case for proteins from all halophilic archaebacteria. Its rather slow

growth is similar to that of other halophilic archaebacteria, particularly Halococcus (Staley et al.,

1989). However, none of the two types of coccoid aerobic archaebacterial isolates known to date, •_i
Halococcus and Natronococcus, showed similarities to BIp with respect to cell protein patterns and

pigmentation. In addition, the wide growth range of BIp, from pH 7.4 to 9.5, is unlike that of other

coccoid archaebacteria. A clear distinction of archaebacteria from eubacteria and among archaebac-

terial strains can be made by sequencing nucleic acids, e.g. 16 S rRNA (Woese, 1987) and by the

analysis of lipids (Ross et al., 1985). These methods are in progress with strain BIp. In summary,

BIp probably belongs to the halophilic archaebacteria and might represent a novel isolate.

From several different locations of salt sediments of great geological age halophilic microorgan-

isms have now been isolated. The question arises if these bacteria were deposited at the time of

sedimentation. Alternatively, they may have entered the salt sediments at some later date, or, thirdly,

they may represent present-day bacterial contaminants which were introduced during handling of the

samples. If the first scenario is correct, these organisms would provide a unique repository of

biomolecules, which was not changed by mutational events experienced by all other living organ-

isms. Many evolutionary problems could be addressed by the study of such ancient bacteria. More-

over, the possibility of long term survival of bacteria would have to be taken into consideration when

looking for extraterrestrial forms of life. In lunar soil, minerals such as halite (NaC1) and sylvite

(KC1) have been detected (Ashikmina et al., 1978); on Mars, surface features were seen which sug-

gested the presence of a liquid, probably water, at some earlier period of its history (Carr, 1987).

Thus, the possibility of "halophilic life" in extraterrestrial environments might be realistic and

should be worth of further exploration.

Direct determination of the age of microorganisms from rock salt is not easy because of the

scarcity of organic material in the samples and the lack of suitable isotope dating methods. An

indirect method is the analysis of pollen and spores from extinct plants, which has been performed

with Austrian salt sediments (Klaus, 1974) and revealed a Permian origin of the rock salt. However,

the possibility that the bacteria in the same sediment entered at a later time by unknown processes

cannot be excluded at present. Here, geological investigations would be necessary which could prove
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thatthe saltsedimentsconsistof primary crystals, which have not been extensively altered during

later times. The third possibilty mentioned above, contamination with present-day halophilic micro-

organisms, can be excluded with proper isolation techniques, such as flaming the salt samples and/or

treatment with bactericidal agents. In addition, halophilic archaebacteria are, in the experience of

most laboratories, not likely to occur as air- or dust-borne contaminants, due to their complex

nutritional requirements.

A different approach to the problem of long term survival of halophilic microorganisms was

taken by Norton and Grant (1988), who showed that ceils remained viable after at least six months of

storage in fluid inclusions of salt crystals. This type of experiment could be extended to include

crystallization and storage of bacteria-containing brines under conditions, e.g., atmospheric

composition, temperature etc., which are thought to prevail on Mars.
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SUMMARY

The effectiveness of two types of hypersonic decelerators is examined: mechanically deployable

flares and inflatable baUutes. Computational fluid dynamics (CFD) is used to predict the flowfield

around a solid rocket motor (SRM) with a deployed decelerator.The computations are performed

with an ideal gas solver using an effective specific heat ratio of 1.15. The results from the ideal gas

solver are compared to computational results from a thermo-chemical nonequilibrium solver. The

surface pressure coefficient, the drag, and the extent of the compression comer separation zone pre-

dicted by the ideal gas solver compare well with those predicted by the nonequilibrium solver. The

ideal gas solver is computationally inexpensive and is shown to be well suited for preliminary design

studies. The computed solutions are used to determine the size and shape of the decelerator that are

required to achieve a drag coefficient of 5. Heat transfer rates to the SRM and the decelerators are

predicted to estimate the amount of thermal protection required.

A

CD

CH

M

q..

qw

Rcase

Uo.

_5

T
p..

NOMENCLATURE

2

reference area, A = KRcase

drag coefficient, CD = D/(q** A) 3
heat transfer coefficient, CH = qw / (0.5p** Uoo)

total mass, kg

freestream dynamic pressure, N/m2

wall heat transfer rate, W/cm2

radius of SRM casing

freestream velocity, m/s

ballistic coefficient, 13= M/(CD A), kg/m2

flare angle or initial angle of ballute

specific heat ratio, Cp/Cv

freestream density, kg/m3

INTRODUCTION

The Aeroassist Fright Experiment (AFE) is designed to provided information which is needed to

design a full scale Aeroassist Space Transfer Vehicle (ASTV). The ASTV will be used to transfer

payload from high Earth orbits, lunar bases, and planetary missions to low Earth orbit (LEO). In

order to enter LEO the ASTV will enter Earth's upper atmosphere and use aerobraking to attain the
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necessaryvelocity depletion.It will thenfly backoutof theupperatmosphereandenterLEO.
BecausetheASTVs will operateatveryhigh altitudes,theflow abouttheASTV maybein thermo-
chemicalnonequilibrium.Theseconditionscannotbeadequatelysimulatedin groundbased
facilities. Thereforeaflight experiment,theAFE, is required.

The AFE is a subscale ASTV. The AFE would fly a representative ASTV trajectory in order to

collect the desired flight data. The AFE would be deployed from the Space Shuttle. Then a solid-

propellant rocket motor (SRM) is fired to accelerated the AFE. When the desired entry velocity for

the test is attained, the SRM casing is jettisoned from the AFE, and the AFE continues on to perform

an aerobraking maneuver. This scenario is shown in figure 1.

Deploy from

Shuttle

Accelerate toAtmospheric Entry _)

Return to Earth Orbit

for Shuttle PicK-Up

Simulate Geosynchronous

Return Aeropass

........ *: _ _:(_ .................. _ _ !_;_U_:i_,'*,::_i_ i_:i_.:# :iiii_:_ _7 :.:_ ...: •

Figure 1. AFE mission (NASA 1-87-9597).

The SRM casing jettisoned from the AFE is large enough that it will not entirely burn up during

entry. To protect human beings from this falling debris, it is required that the SRM casing drop in to

the water at least 300 miles from any large land mass (ref. 1). In order to determine approximately

where the SRM casing will land, it is necessary to know where it begins its descent into the atmo-

sphere. If the SRM casing initially skips out of the atmosphere before being captured, it is very

difficult to predict where and when it will be captured and where it will finally land. As recently as

April 1991, the seriousness of such a problem was brought to light when a large piece of debris from

a Soviet space station fell into a populated area of Argentina.

Whether or not the SRM casing will skip out is determined by its ballistic coefficient,

[3 = M/(CDA). The reference area, A, used to calculate CD is the same as that used to calculate 13.

Therefore, [3 is altered by changing the total mass of a body or the total drag produced by a body.

Increasing the drag, hence lowering 13,will cause a body to lose momentum more quickly. This will

cause the body's atmospheric trajectory to become steeper. Increasing the mass of a body, hence
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increasing [3, will tend to cause the body to decelerate more slowly and to maintain a shallower

trajectory longer. It is this shallow trajectory that can cause a body to skip out.

The calculated trajectories for a range of ballistic coefficients is shown in figure 2 (ref. 2). The

ballistic coefficient of the SRM casing is approximately 112 kg/m 2. As can be seen in figure 2, a

body with a [3 of 112 has a high probability of skipping out before being captured by the atmosphere.

Also shown in figure 2 is a range of acceptable ballistic coefficients. A ballistic coefficient of

49 kg/m 2 will assure that skip out does not occur. In order to lower [_, either the weight of the SRM

casing must be lowered or the drag must be increased. Since the minimum weight of the SRM casing

is predetermined by the needs of the AFE mission, it cannot be adjusted to lower ]3. Therefore, the

drag must be increased. The CD of the SRM casing alone is predicted to be approximately 1.56. By

increasing the CD to around 5, a [3 of 49 or less can be attained. The additional drag needed can be

produced by attaching a drag enhancement device to the SRM casing to increase the total pressure

drag.

600

'10

<

4O0

200

= M/(CDA )

[3=61

13=

1 I I
0 500 1000 1500 2000 2500

Range from separation (nmi)

Figure 2. Ballistic entry trajectories (ref. 2).

The use of high speed and hypersonic drag brakes, has been investigated for many years and

many different configurations have been proposed. Among these drag devices were attached or

tethered ballutes (ref. 3). A ballute is a combination balloon parachute and is inflated using ram air

pressure or an on board pressure source. Also investigated were rigid flares, spoilers, and spikes that

are mechanically deployed (ref. 4). A flare is attached around the entire vehicle while one or more

spoilers can be deployed intermittently around the vehicle. Most recently, a ballute decelerator has

been examined computationally (ref. 2). Most of the research done thus far for hypersonic decelera-

tors has been applicable to high performance reentry vehicles or Apollo capsule recovery, payload
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recovery, and booster payload collision avoidance. However, none of this research takes into account

the real gas effects encountered at the altitudes and speeds experienced by the SRM casing.

A number of considerations must be taken into account when choosing a viable decelerator

configuration. These considerations include high heating rates, ease of decelerator deployment,

stability of the SRM/decelerator configuration, and, ultimately, how much drag the decelerator can

produce. After examining several of the above configurations, it was decide that a ballute attached to

the rear of the SRM casing or a flare attached in the same manner would most likely be the best

suited for this mission (ref. 1). This conclusion was reached for the following reasons. First, a ballute

attached to the rear of the SRM casing or a conical flare attached in the same way would tend to be a

more stable configuration. Also, since the flare is mechanically deployed, tumbling would not affect

the flare deployment. If an on board pressure source is used to inflate the ballute, tumbling would not

affect the ballute deployment. The amount of drag produced by the conical flare and the ballute must

be predicted in order to determine the size of the drag device needed to produce the desired increase

in drag. Also the heat transfer rates to these drag devices needs to be estimated in order to determine

whether existing materials could be used for thermal protection.

NUMERICAL METHODS

Thermo-Chemical Nonequilibrium Solver

The actual configuration for the SRM casing is shown in figure 3(a). Shown in figure 3(b) is the

modified SRM configuration, with an attached flare decelerator, used in the numerical computations.

The model for the ballute is shown in figure 3(c). The outer ring of the SRM casing shown in

figure 3(a) is neglected in the models used for numerical computations. Neglecting the ring is possi-

ble because it will be contained within the large separated region of the flow. Because of this, the

ring is not important when calculating the total drag. Therefore, the ring is neglected in the

computational analysis.

All flow field calculations assumed axisymmetric flow. The freestream conditions for the compu-

tations correspond to the peak heating trajectory point (ref. 1). These conditions are given in table 1.

Because of the high altitude and the high speed of the SRM trajectory, the flowfield around the SRM

casing may be in thermo-chemical nonequilibrium. This flowfield was solved for by using a thermo-

chemical nonequilibrium code developed by Palmer. This code is an explicit, finite-difference,

shock-capturing algorithm that used flux-vector splitting to solve the thin layer Navier-Stokes equa-

tions in a time marching fashion (ref. 5). The algorithm incorporated a finite rate chemistry model

consisting of 10 species and a fully coupled two temperature thermal nonequilibrium model of Park

(ref. 6). This code has been validated using experimental and computational data. The experimental

data included ballistic range, shock tunnel, and flight data. The computational results have been

compared against values from a thermo-chemical nonequilibrium solver developed by Candler. This

code also solved the thin layer Navier-Stokes equations but used a finite volume, fully coupled,

implicit technique that used Gauss-Seidel line relaxation (ref. 7). It also incorporated a multi-

temperature thermal nonequilibrium model. However, the nonequilibrium codes are very costly to

run, requiring 3 to 4 hours of CPU time on a CRAY-2 for the cases considered in this work. There-

fore, they are not well suited for producing results for multiple configurations as was required here.

148



Rcase = 79.96 cm
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Figure 3. SRM model. (a) Configuration, (b) model for computation with flare.
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Figure 3. Concluded. (c) Model for computations with ballute.

Table 1. Freestream conditions

altitude 76,250 m

velocity 9,126 m/s

density 3.6087 x 10 -5 kg/m 3

pressure 2.0674 N/m 2

temperature 199.6 K

Reynolds No. 22,370/meter

Effective T Ideal Gas Solver

In order to calculate solutions in a timely manner, a perfect gas version of the thermo-chemical

nonequilibrium code developed by Candler was used. An effective specific heat ratio, _t, was used in

the ideal gas solver in an effort to simulate the real gas nature of the flow field. This technique has

been used successfully to predict drag and moment coefficients produced by a body in a real gas

flowfield (ref. 8). The choice of effective ]' was based on a solution produced by Palmer's thermo-

chemical nonequilibrium solver. Further explanation of the procedure used to choose an effective _'
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is givenin thenextsection.Theidealgassolverhasbeenvalidatedagainstexperimentaldatafor
spheres,spherecones,andsharpnosedconesatavarietyof hypersonicspeeds(ref. 7). The idealgas
solveris very robustandrequiresonly 10to 15minutesof CPUtime ona CRAY-2 for thesame
conditionsthatwereusedin thenonequilibriumcode.

A schematicof theexpectedflow featuresof theSRMcasingwith a conicalflare deceleratoris
shownin figure 4. Shownin this figure is thestrongouterblunt body shockproducedby thenoseof
the SRMcasing.Thenthereis astrongexpansionregionaroundtheshoulderof theSRM casing.
Thejunctureof the SRMcasingandthedeceleratorforms acompressioncomer.Thehypersonic
flow in this regioncannotnegotiatethiscomerandseparates.A shockformsat theupstreamedgeof
the separatedregion.Furtherdownstream,this shockinteractswith theblunt body shockoff thenose
of theSRM. Thepeakpressureandheattransferratefor thedragdeviceoccurin thevicinity of this
shock-shockinteraction.Thetwo shocksthencoalesceto form anobliqueshock.

While both thenonequilibriumsolverandtheperfectgassolverhavebeenusedextensivelyfor
hypersonicblunt body flows, until now neitherhasbeenusedto studyflows with largeseparated
regionssuchasthat shownin figure 4. Thepredictionof this separatedregionis importantsincethe
sizeof theregionwill affecttheamountof dragproducedby thedecelerator.

Resultant Shock

Shock-Shock Interaction

Compression Corner Shocks

Outer Blunt

Body Shock
Peak Pressure /

Heat Transfer Zone

Re_irculation Region

m

Figure 4. Flow schematic for SRM and flare.
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COMPUTATIONAL RESULTS AND ANALYSIS 

2-D Compression Corner Simulation 

The region where the the SRM casing and the decelerator join forms a compression comer. The 
hypersonic flow coming into this compression region cannot negotiate the comer made by the 
Swdecelerator  juncture, and the flow separates. In order to confirm that this type of flow can be 
predicted with reasonable accuracy using the available solvers, a comparison is made with experi- 
mental results for a two-dimensional compression comer (ref. 9). The experimental flow was laminar 
until the reattachment region where transition was suspected to have occurred. The expenmental 
case used for comparison was a compression comer with a 15" comer angle at Mach 10 with a 
100°K constant temperature surface. The experiment was performed in air with y = 1.4. The 
freestream conditions were as follows: T, = 50" K, P, = 294.5 Pa, ReL = 2.3 x 106 where L is the 
length of the flat plate portion of the model, L = 0.25 m. The solution computed using the ideal gas 
solver with y = 1.4 is compared to the experimental schlieren photograph in figures 5(a) and 5(b). In 
figures 6 and 7, Cp and CH are compared with experimental results. In figure 6, the modest pressure 
rise at about X/L = 0.82 indicates the separation point. This is followed by a plateau typical of lami- 
nar separation (ref. 9). Then, in the reattachment region, the pressure rises rapidly and over-shoots 
the constant downstream value. The pressure over-shoot occurs in the reattachment region and is a 
common feature in high Mach number separated flows (ref. 10). This over-shoot is caused by the 
interference between the separation and reattachment shock waves. The computational results are 
able to predict the pressure overshoot in the reattachment region. The overshoot predicted by the 
computations is somewhat less than that found by experiment. The discrepancy could be due to 
turbulent transition taking place in this area. The differences in peak pressure are acceptable and any 
impact on the decelerator calculations will not be significant. The computed Cp in the separated 
region compared well with experimental values. The size of the separated region and the value of the 
pressure within the separated region agreed with that found experimentally. 

Heat transfer data are shown in figure 7. The experimental data show that heat transfer rates 
decrease slowly along the upstream portion of the flat plate. The separation point is indicated by the 
sharp decrease in heat transfer rate. The heat transfer rate reaches a minimum within the separated 

(b 1 
Figure 5. (a) Schlieren of 2-D compression corner (ref. 9), (b) calculated Schlieren of computational 
solution. 
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Figure 6. Pressure coefficient for 2-D compression comer.
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Figure 7. Heat transfer rates for 2-D compression comer.

153



region and then increases rapidly in the reattachment region. The trend of the computed heat transfer

rates compares well with the experiment. The size and location of the separated region, inferred by

the rapid drop and then rapid rise in heat transfer, is adequately predicted by the computational

methods. The computed heat transfer rates reach a peak in the reattachment region but fall short of

the experimental peak value. However, the agreement is adequate for preliminary design purposes.

The higher heat transfer rates found by the experiment may be due to transition taking place in the

reattachment region.

SRM/DECELERATOR SIMULATIONS

Although the flowfield around the SRM/decelerator will be dominated by real gas effects, the

pressure field can be simulated using a perfect gas with an effective y. The value of the effective )'

that is chosen depends on the particular conditions under consideration. In a hypervelocity flow of a

diatomic gas, high temperatures cause the molecules to dissociate into atoms, and the available

modes of energy decrease from five to three, namely translational energy in three dimensions.

Decreasing the available energy modes will increase the value of y until the theoretical limit of 5\3 is

reached. However, the high temperatures also cause the molecules to become vibrationally excited.

This increases the number of energy modes and thus decreases _/. For a highly nonequilibrium flow-

field, vibrational energy modes are excited, but the molecules do not have time to dissociate into

atoms. So the chemical dissociation effects are swamped by the thermal effects, and the value of

_/drops below the perfect gas value of 1.4. Flowfields which are dominated by real gas effects may

have a value of _ around 1.1.

The pressure field can be simulated with a perfect gas solution because the pressure is only

loosely coupled to the thermo-chemistry of the flow. Instead it is much more dependent on the fluid

dynamics of the flow. It was shown earlier that the blunt body flow and the compression comer flow

for the SRM/decelerator can be calculated with reasonable accuracy. Therefore, with the proper

choice for the value of effective _/, the pressure field for this flow can be calculated reasonably well.

To be able to choose an appropriate effective 'y either a computational solution which takes into

account the real gas thermo-chemistry or experimental data for the flight conditions in question is

needed.Since no experimental data exists for the present configuration, the nonequilibrium code is

used to generate the real gas flowfield around the SRM/decelerator configuration. The nonequilib-

rium code is used to determine the shock shape and standoff distance associated with the real gas

flow. The shock shape and standoff distance determine the pressure field of the flow. A series of

effective _'s was tried in the ideal gas solver in the effort to reproduce the real gas shock shape and

standoff distance. The resulting drag curves for various _/s is shown in figure 8. This figure shows

that an effective "_ of 1.15 does a good job of reproducing the surface pressure field.

Pressure contours of the entire flow field are shown in figure 9. The pressure contours computed

by the real gas solver for an SRM with a 50 ° flare are shown in figure 9(a). Figure 9(b) shows the

pressure contours computed by the ideal gas solver with an effective _ of 1.15 for the same configu-

ration. Figures 9 and 10 show that an effective _' of 1.15 does a very good job of reproducing the

pressure field of the real gas flow.
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Figure 8. Drag coefficient for variable 7 and real gas solution.

The pressure contours shown in figure 9 can be compared to the schematic of the expected flow

features shown in figure 4. The pressure contours clearly show the blunt body shock formed by the

nose of the SRM casing. The shock formed at the separation point is seen as a moderately large

gradient in pressure just downstream of the SRM shoulder expansion. The separation shock interacts

with the bow shock creating a high pressure region about half way up the flare. The two shocks

merge in the interaction region to form an oblique shock. The extent of the separation region can be

inferred from the pressure contours as the region of nearly constant pressure at the base of theSRM

casing. A better idea of the separated region can be made by looking at velocity vectors. Figure 10

shows an expanded view of the SRM/decelerator comer region. The velocity vectors clearly show

that a large portion of the SRM casing and the flare are contained within the separated region.

Computations for Conical Flare Decelerators

With an appropriate value of T, the perfect gas code was used to study the flare and ballute drag

devices. The decelerator must increase the drag of the SRM casing such that _ = 49 Kg/m 2 or less is

achieved. This condition corresponds to producing a CD of about 5.

The f'u'st decelerator concept that was examined was the conical flare. A schematic of the flow-

field produced by this type of configuration is shown in figure 4. The schematic was drawn for a

flare angle of 50 ° . The angle of the flare influenced the size of the separated region and also the

shape and strength of the shock in the downstream region. The size of the separated region affects

the efficiency of the flare. If no separation occurs, the entire length of the flare is utilized as a com-

pression surface. If a separation region exists, that portion of the flare within the separated region is
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Figure 9. Pressure contours. (a) Real gas solution.
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Figure 10. Velocity vectors- separation region 50 ° flare with _(= 1.15.

lost as a compression surface. The strength of the shock produced by the flare also affects the effi-

ciency of the decelerator. A strong shock produces a greater pressure rise than a weak shock and

therefore a greater increase in drag. Also, for larger flare angles, a greater portion of the pressure

force vector acting on the body is directed in the axial, or drag, direction. Therefore, more drag is

produced for the same distribution of surface pressure.

Pressure contours for three flare angles, 40 ° , 50 ° , and 60 ° , were computed. The results for the

50 ° flare are shown in figure 9(b). The 40 ° and 60 ° cases are shown in figures I 1(a) and 11 (b). A

very small separation region was produced by the 40 ° flare, and a relatively weak downstream shock

was formed. The peak pressure on the flare for this case was considerably lower than at the SRM

nose stagnation point. The 50 ° flare produced a larger separated region and a stronger resulting

oblique shock. The peak pressure produced by this flare was on the order of that produced in the
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SRMnoseregion.As theflare anglewasincreasedto 60° the character of the downstream shock

changed. A very large separated region was produced encompassing almost the entire SRM casing

downstream of the expansion shoulder. But more importantly, the downstream shock changed from a

weak oblique shock to a strong blunt shock. The peak pressure on the flare occurs in the area where

the strong shock is located. This pressure was much higher than the SRM nose stagnation point pres-

sure. The CD produced by the 40 °, 50 °, and 60 ° flares is shown in figure 12. As can be seen in this

figure, the desired CD of 5 can be achieved by any of these flares with the proper choice ramp

length.
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Figure 11. Pressure contours. (a) 40 ° flare.
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The computed heat transfer rates for the flare decelerators are shown in figure 13. The rise in

surface heat transfer rate seen at 0.9 m along the surface was due to the thinning of the boundary

layer as the flow expanded around the shoulder of the SRM casing. The peak in heat transfer rate to

the flare was due to the bow shock, produced by the nose of the SRM, interacting with the shock

produced by the decelerator. The peak in heat transfer rate corresponds to the peak pressure on the

flare. This region of peak pressure can be seen in the pressure contours shown in figure 11. The peak

in heat transfer rate on the flare was of particular importance because, for a ballistic coefficient

of 49, the decelerator must survive for approximately 150 seconds to ensure atmospheric capture.
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While the 40 ° flare has a low heat transfer rate, figure 13, it must have a greater length than the

50 ° or 60 ° flares in order to achieve the desired CD, figure 12. Therefore, an additional mass penalty

must be accepted. The 60 ° flare can achieve the desired drag with a relatively short length, but it
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must also endure a significantly higher heat transfer rate than the other configurations. This brings

the survivability of the 60 ° flare into question. The 50 ° flare achieved a CD of 5 with a length only

20% larger then the 60 ° case. Furthermore, the 50 ° flare had a peak heat transfer rate similar to that

found at the stagnation point and shoulder of the SRM casing which was considerably lower than for

the 60 ° flare. An analytical check of the SRM stagnation point heating rate was performed by Tauber

using reference 10. This point, shown in figure 13, is only 8% higher than that calculated by the

perfect gas solver.

Computations for Ballute Decelerators

The next type of drag device that was examined was the ballute. The ballutes studied here are

ellipsoidal in shape. The ballutes were attached to the SRM casing with initial angles that varied

between 5 - 70 ° and _5= 80 °. The ballute produced a bow shock wave that interacted with the bow

shock off the nose of the SRM casing. This is in contrast to a flare drag device which generally

produced a weaker oblique shock. The interaction of the SRM nose shock and the ballute shock

created a high pressure region on the surface of the ballute. Downstream of this region the pressure

dropped off as the flow expanded around the aft portion of the ballute. The flow in the region where

the ballute attached to the SRM casing was again largely separated causing a large region of nearly

constant pressure.

Pressure contours shown in figure 14 are for three ballute shapes. The ballutes attached to the

SRM casing with initial angles of 70 °, 75 °, and 80 °. Increasing initial angle implies increasing bal-

lute size. The pressure contours for the 70 ° ballute show a separation shock formed just downstream

of the SRM expansion shoulder. This shock interacted with the blunt nose shock, but only a modest

pressure increase was realized. The pressure contours for the 75 ° ballute show that the nearly con-

stant pressure separated region has enlarged. The 75 ° ballute formed a stronger blunt shock than the

70 ° ballute. This shock interacted with the bow shock off the nose and produced a small region of

high pressure. The pressure contours for the 80 ° ballute also show a very large separated region, but

a stronger shock was produced by this ballute. The interaction of the nose bow shock and the ballute

bow shock produced an area of peak pressure that is considerably higher than for the 75 ° ballute.

Also the size of the high pressure region on the surface of the 80 ° ballute was almost twice that for

the 75 ° ballute.

The CD produced by these three shapes is shown in figure 15. For the problem considered here, a

CD of around 5 was required. As can be seen in figure 15, a 75 ° ballute would produced the desired

drag. But also note that an 80 ° ballute produced a CD as high as 10 with only a modest increase in
size.

Heat transfer rates for these three cases are shown in figure 16. What is important to note here is

that for the 75 ° ballute, which produced the desired amount of additional CD, the maximum heat

transfer rate was less than that found at the stagnation point of the SRM casing. Also, for the 80 °

ballute case which produced a very high CD, the maximum heating rate was on the order of that

found at the stagnation point of the SRM casing.
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A similar typeof ballutedesignwasinvestigatedby WangandShih(ref. 2). Theballute
discussedin reference2 hadacircularcrosssection.Thepeakheattransferratepredictedfor the
circularcrosssectionbaUutewasabouttwice ashighasthatpredictedfor theellipsoidalshapes
examinedhere.WangandShihfound thatanumberof existingmaterialscouldprovidesuitable
thermalprotectionfor their ballutedesign.Sinceneithertheheatingratesfor theflared decelerators
nor thosefor theballutesexceedthoseanticipatedby WangandShih,it is assumedthat thesame
typeof thermalprotectioncanbeusedfor thedeceleratordesignsdiscussedhere.

DISCUSSIONS

Comparisons of CD and heat transfer rates for the flared decelerator and the ballute are shown in

figures 17 and 18, respectively. As is indicated in these figures, the ballute is capable of producing a

larger amount of drag than the flare for the same amount of heat transfer. Note, however, that the CD

produced by the ballute reaches an asymptotic value, while that for the flare increases linearly as the
length of the flare is increased. There are several other considerations which must be addressed

before deciding what design is more suited for the SRM mission. First, because the ballute is

inflated, it is possible for it to deform in regions of high pressure such as that produced by the shock-

shock interaction discussed earlier. These local deformations may cause the SRM/ballute configura-

tion to behave in an unsteady manner. To avoid this problem, the internal pressure of the ballute

could be made high enough to make the ballute geometrically stiff. The maximum pressure on the

external surface of the 80 ° ballute was 0.04 atm. Because the maximum external pressure is low, the

ballute could be inflated to an internal pressure substantially higher than the maximum external

pressure. This would make the ballute essentially stiff. Since the flare decelerator is made of rigid

members, local deformations should not be a problem.
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Figure 17. Drag coefficient comparison.
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Figure 18. Heat transfer rate comparison.

For both the flare and the ballute, the base flow region is not computed. It is likely that the base

flow will be unsteady and turbulent. However, the pressure in the base flow region will be very low,

so the total drag will not be affected. The heat transfer rates in the base flow region are also expected

to be considerably lower than the peak heating rates in the forbody (ref. 11).

Turbulence is neglected in the flowfield computations for the SRM/decelerator. The Reynolds

number of the flow is sufficiently low, 2.2 x 104/m, to assume that the flow is laminar. Furthermore,

it has been shown that turbulence tends to decrease the size of a separation region for a 2-D com-

pression comer (ref. 9). A reduction in the size of the separated region would cause the amount of

drag produced by the decelerator to increase. Therefore, by omitting turbulence, the computations

would tend to under predict the drag produced by a decelerator, which is acceptable for design

studies. However, if transition did occur, the heat transfer rates in the turbulent region would be

higher than if the flow had remained laminar.

It is likely that the SRM/decelerator will not immediately steady out to a zero angle of attack

orientation. Instead it will probably go through a transition stage where it will experience a range of

orientations at non-zero angles of attack. The peak pressure and heat transfer rates experienced by

the decelerators at non-zero angles of attack can be anticipated by looking at zero angle of attack

solutions with flare angles larger that the nominal flare angle. For instance, the peak pressure and

heat transfer rates experienced by a 50" flare at 10 ° angle of attack can be estimated by looking at the

axisymmetric solution for the 60 ° flare, figure 1 l(b). Therefore, by examining higher flare angle

solutions, the maximum pressure and heat transfer rates that the decelerator must endure during its

mission can be estimated.
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Theballuteandthe flare have both desirable and undesirable characteristics as drag decelerators.

For instance, the ballute produces a large total drag increase with a relatively low heat transfer rate.

However, the efficiency of the ballute is compromised by the large separated region caused by the

high angle compression comer. Also, as the flow expands around the downstream end of the ballute

the drag increase levels off until it is zero. So the rear end of the baUute, where the local surface is

along the freestream direction, does very little to increase the total drag. Since the flare does not have

a downstream expansion region, the drag increases linearly with the length of the flare. However, for

high flare angles, the heat transfer rates are very high. And for lower flare angles, the length of the

flare required to achieve the desired drag increase becomes large. Although the separated regions

created by the flares tend to be smaller than for the ballutes, the flares still suffer significant losses

due to the separation.

It seems likely that a combination of the flare and ballute geometries could be constructed to take

advantage of the desirable characteristics of the separate geometries. An optimization procedure

could be performed to produce a geometry that minimizes the separation region, maximizes the total

drag increase, and minimizes the maximum heat transfer rate to the decelerator. An optimization

study of this sort would be expensive and time consuming in experimental facilities. It would be too

costly to perform this sort of study computafionally with a full thermo-chemical nonequilibrium

solver. However, the computational method used here is very well suited for optimization studies.

The computational procedure has about a 10 minute turn around time for each new design, and this

time could be considerably reduced with a judicious choice of initial conditions. Furthermore, this

procedure could be used to conduct similar design studies for geometries other than hypersonic

decelerators. As long as the fluid dynamics are similar and either experimental results for shock

shape or CFD results, which take into account real gas effects, for shock shape are available, an

appropriate value for effective ")(can be chosen. With an appropriate choice of effective "it, the ideal

gas code can be used to efficiently study a wide range of vehicle designs.

CONCLUSIONS

This work has shown that, aerodynamically, either the flared decelerator or the ballute decelera-

tor can be used to produce a SRM/decelerator configuration with [3 = 49 Kg/m 2 to assure that no

atmospheric skip out occurs. The ballute can produce a higher drag increase than the flare for the

same amount of surface area and for similar peak heating rates. The heat transfer rates computed for

the decelerators can be used to estimate the amount of thermal protection needed to assure

decelerator survival for the necessary amount of time.

Employing an ideal gas formulation with an effective )' to compute the pressure field and

estimate the heat transfer rates of a hypersonic flowfield with real gas effects has been shown to be

successful for preliminary design purposes. The effective )' procedure requires only 5% of the CPU

time needed for a full thermo-chemical nonequilibrium solution making this procedure ideal for

design studies of this nature.
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SUMMARY

?.

The next generation of space vehicles will be subjected to severe aerothermal loads and will

require an improved thermal protection system (TPS) and other advanced vehicle components. In

order to ensure the satisfactory performance of these newly developed materials and components,

testing is to be performed in environments similar to space flight. The designs and fabrication of the

test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory

Ceramic Materials test series, the models and model holders will need to withstand the required heat

fluxes of 340 to 817 W/cm 2 or surface temperatures in the range of 2700 K to 3000 K. The model

holders should provide one dimensional (l-D) heat transfer to the samples and the appropriate flow

field without compromising the primary test objectives. The optical properties such as the effective

emissivity, catalytic efficiency coefficients, thermal properties and mass loss measurements are also

taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate

the design schemes for different models and model holders that would accommodate the test

requirements and ensure the safe operation in a typical arc jet facility.

INTRODUCTION

Future space vehicles such as the National Aerospace Plane (NASP), Mars and Lunar return

vehicles, and other planetary probes reentering the earth atmosphere at hypersonic speed, will

require an adequate Thermal Protection System (TPS). Thus, development of such TPS requires new

research programs for high temperature heat shields. Recently, a program called Advanced Refrac-

tory Ceramic Materials has been initiated at Ames to develop and search for new materials for future

space vehicles. A series of high temperature materials such as zirconium diboride and hafnium

diboride were tested in the Ames 60MW plasma arc-jet facility. Preliminary results showed that the

diboride materials are promising candidates for high temperature heat shields (ref. 1). One of the

limiting aspects of the test series is that the samples were too small for any thermal, optical property

and recession rate measurements. Consequently, in order to further characterize these new materials,

more testing is required. Therefore, a second phase of arc-jet testing is initiated which requires new

model and model holder designs. The model designs for the phase II arc jet test will accomplish the

following objectives.

1. Study the scaling effect (larger sample size) on the thermal performance of materials such as

mass loss measurement, recession rate, thermal shock, and thermal stress.

2. Measure the effective emissivity, catalytic efficiency coefficients and thermal conductivity.
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3. Observethegeometryeffects,i.e.,materialdirectionaleffects,on thermalperformance
materialsapplications.

Model designfor arcjet testingrequiressomebasicunderstandingof thehigh temperaturesuper-
sonicflow in wind tunnelsandheattransfer.Thesebasicconceptsareessentialin determiningthe
modelsize,geometry,andinstrumentationoptionsthat will satisfythetestobjectives.The nextsec-
tion givesabrief descriptionof atypical arcjet facility andits capabilitiesfollowed by theessential
considerationsin themodeldesigningprocess.Simpleheattransferequationsareoutlinedto assist
thedesignerin determiningtheoverallmodelsizeandgeometry.It alsopointsoutother factors
whichaffect thefinal modelconfiguration.Basedon theaboveconsiderations,thenextsection
describesthechosenmodeldesignsfor thephaseII arc-jettests. A couponsamplemodel is usedto
investigatethescalingeffectandto obtainthermalandopticalmeasurements.Leadingedgeandnose
tip modelsaredesignedto explorethegeometryeffectsaswell asthepossibilitiesof newapplica-
tions for diboridematerial.

DESCRIPTION OF THE AMES 60 MW ARC JET FACILITY

The Ames 60MW Interactive Heating Facility (IHF) is used to simulate earth re-entry flight con-

ditions of space vehicles. It is a plasma arc blow-down type supersonic wind tunnel where the test

gas is heated by electrical power using the 8-cm constricted arc heater (fig. 1). After leaving the arc

heater column, the highly energized gas is supersonically expanded by a convergent-divergent noz-

zle and is discharged into an evacuated test chamber where the test article is located. The tempera-

ture, velocity and pressure of the test gas can be varied to simulate atmospheric re-entry for the space

vehicle by using different nozzle exit areas of the divergent nozzle section. The stream can attain

enthalpy up to 56 MJ/Kg and velocity up to Mach 8.

DESIGN CONSIDERATIONS

When a supersonic stream flows over a blunt body, a wedge or a compression corner, a shock

wave is created. This is caused by a large change in density, pressure, temperature, velocity, etc.

across an extremely thin region of the shock layer. In the arc jet facility, the flow is not only super-

sonic in the test section but the gas itself is highly energized. The kinetic energy of the gas in the free

stream is converted into internal energy that results in a very high temperature shock layer near the

surface. This phenomenon is referred as the aerodynamic heating effect.

The aerodynamic heating effect can be understood by simply considering that the kinetic energy

in the free stream is converted into internal energy and radiant energy at the shock. Part of this

energy is being used to heat the air which causes the increase in temperature across the shock and the

other portion goes into heating the body. At the surface, the energy in the shock layer is transferred

to the body by conduction. For a blunt body, a detached strong shock is generated and a portion of

the energy in the shock layer is conducted to the body while the remainder is convected downstream

past the body (fig. 2(a)). For a slender body with a sharp nose, e.g., NASP, the shock is oblique and

nearly attached at the nose or leading edge. In this case, nearly all of the internal energy is conducted

to the body at the nose tip and leading edge (fig. 2(b)).
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Figure 1. Schematic of Ames 60 MW interactive heating facility.

The primary design parameters for the arc jet model are the nose radius and final geometry.

These parameters are affected by the imposed heat flux, stream enthalpy and flow field requirement.

The section below describes the methodology in determining the model overall configuration for a

given flight condition.

MODEL SCALE (NOSE RADIUS CALCULATION)

It is essential to determine the actual cold wall heat flux on model surface which includes both

geometry and surface chemistry effects. The flow field and shock shape are also dictated by the

body's shape. Therefore, the nose radius calculation is based on the given corrected cold wall heat

flux or surface temperature in the following manner.

a. Cold wall heat flux known

If the heat flux is known, the radius of the test model can be calculated by considering the following:

The convective heat transfer rate at the stagnation surface of a spherical nose can be empirically

written as (ref. 2)

Clconv = peUeCh (Hr - hw ) (1)

Note that there is little if any radiation flux in these arc jet tests. This equation emphasizes the differ-

ence in enthalpy as the "driving potential" for aerodynamic heating where hw is wall enthalpy. Hr is
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Figure 2. Flow field and shock shape of typical enLry bodies.

the recovery enthalpy (i.e., total enthalpy near the shock), C h is the heat transfer coefficient, and Pe

and Ue are the boundary layer edge density and velocity, respectively. Equation (1) can be simplified

to give

Clconv = c_-P-_ - (Hr-h w) (2)
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Equation (2) is often referred to as a simplified Fay-Riddell expression (ref. 3). The nose radius of a

hemispherical body at a given flight condition can therefore be approximated by

( C(Hr - hw))2pt2 (3)
Rhemi=\ ' _co_v ')

where Pt2 is stagnation pressure( in PASCAL); R is the nose radius of a sphere (in cm), Clconv is in

W/cm 2 and C is a proportionality constant and is taken to be 0.3531. The wall enthalpy, hw, is often

neglected for cold wall heat flux and Hr is the free stream recovery enthalpy in MJ/kg.

To obtain the effective radius in other geometries such as a flat face cylinder, a correction factor,

f, is used. This factor is obtained from the ratio of heat flux on different model geometry to that on a

hemisphere. For a flat face cylinder, f is taken to be 0.53-0.57 (ref. 4).

Ref f = f Rhemi (4)

b. Surface temperature known

In some instances, the surface temperature becomes more important because of the uncertainty in

heat flux calculation due to surface chemistry effects or there is an upper use limit temperature. In

this case, the convective heat flux in equation (2) can be calculated by using the Stefan-Boltzmann

equation and assume that the given temperature is the radiative equilibrium temperature.

The Stefan-Boltzmann equation is

Clconv = qeq rad = (yeT4q (5)

where

Cleq rad is the equilibrium radiative heat flux in W/cm 2

c is the Boltzmann constant and equal to 5.669E-12 W/cm2-K 4

is the emissivity.

Surface chemistry or wall catalysis is another important consideration in calculating the surface

convective heat flux. It is defined as the recombination rate of dissociated species at the surface. For

a fully catalytic surface such as a metal, the recombination rate is very large; i.e., the mass fractions

at the wall are their equilibrium values at the local pressure and temperature at the wall. At partially

catalytic surfaces, the recombination rate is finite; i.e., there is a gradient of mass fraction at the wall.

Finally, when there is no recombination at the surface, it is said to be a non-catalytic surface (e.g.,

oxides). Surface catalysis is not well understood because of the complex physical nature of gas-

surface interaction. Consequently, to simplify the model design process, the surface is assumed to be

either fully catalytic or non-catalytic. Past experience and study indicate that the aerodynamic heat-

ing of a fully catalytic surface is about a factor of two more than that on the non-catalytic surface

(ref. 2).
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MODEL DESIGNS

1. Coupon sample arc jet model:

In the Advanced Refractory Ceramic Material phase I arc jet test, a series of heat fluxes were

imposed on the test samples. The results indicated that the upper limit heat flux for the reusability of
diboride material is about 340 W/cm 2. The surface of the diborides is also considered to be fully

catalytic. This heat flux occurred at a corresponding enthalpy of 27.9 MJ/Kg and stagnation pressure

of 1.013E-06 PASCAL. This test condition is also similar to that was used in late 1960s and 1970s

arc jet testing at ManLab (ref. 1). Thus, in phase II testing, the similar test conditions are used in

model scaling calculations.

A flat face cylinder is chosen for model geometry for several reasons. First, the temperature and

pressure gradient across the surface are small which result a uniform heating distribution across a

large portion of sample surface. This, in effect, allows an accurate measurement for recession rates

and thus a better characterization of material thermal performance. Secondly, for optical property

measurements such as the emissivity and radiative flux for catalysis calculations, the model surface

has to be large enough so that there is a sufficient reflected area for sensor detection. Thus, using

equation (3) and taking the instrumentation constraints and facility operating limitation into consid-

eration, the allowable radius for a spherical model is 8.478 cm for heat flux of 340 W/cm 2. From

equation (4), the radius of a flat face cylinder is calculated to be about 5.08 cm.

Figure 3 shows the schematic of the coupon sample model assembly. To study the scaling effect

and measure the optical properties, the radius on the coupon sample for phase II testing is three times

as long as that of phase I. In order to accurately measure the recession rate and mass loss, the heat

transfer needs to be one dimensional, i.e., no side heating around the model. Unlike the hemisphere

geometry, the peak heating on a flat face cylinder does not occur at stagnation point but rather at the

comer region. It has been shown that the edge heating effect occurs at about 0.75 of X/R ratio where

X is the distance from the sample center to the edge (ref. 4). To eliminate the edge heating effect and

provide a uniform heating distribution on the sample surface, a high density (POCO PGSC-1)

graphite ring with a thick wall (1.40 cm) is used. Several layers of Grafoil are used to insulate the

sample from the graphite ring so that the heat transfer to the test sample is one dimensional. This

particular graphite ring can accommodate a 3.556 cm radius and 0.635 cm thick coupon sample.

An adiabatic wall condition is needed to further ensure the 1-D heat transfer requirement. This is

achieved by placing a zirconia reflector plate between the back face of test sample and the holder.

The length of the graphite ring can be determined by using an one-dimensional Fourier equation for

heat conduction (ref. 7):

= KoT _K AT _KT2_T Clcond= Ctconv - = Ax = (6)
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Figure 3. Isometric view of coupon sample model.

where

K is the thermal conductivity of holder material, W/cm2-K

T2 is the surface temperature, K

T1 is the desired interface temperature, K

L is length of the holder, cm

The graphite ring is connected to the water cooled shroud by a two-end threaded tungsten

adapter. The shroud conducts most of the heat from the graphite away and prevent the melting of the

facility water cooled strut. In a oxidizing environment such as that in the arc jet facility where the

free stream consists of 21% oxygen, the use of tungsten is not recommended due to its high oxida-

tion reaction rate. However, if it is protected by other material that is oxidized more rapidly such as

graphite, tungsten can be used to withstand the high temperature application.

The installation of surface thermocouples in the diboride material is extremely difficult due to its

high mechanical strength. It was decided that the surface temperature could be obtained by placing

one thermocouple at 0.081 cm from the sample's surface. The back face temperature is monitored by

installing a thermocouple at the contact surface between the reflector place and sample. The thermal

conductivity and effective emissivity can be calculated by using these temperature results along with

the corrected black body temperatures from pyrometers.



The effective emissivity can be calculated by using the Stefan-Boltzmann equation (ref. 7);

G_bT 4 = GEeffT 4 (7)

where

c is the Boltzmann constant

eb is the emissivity - 1.0 for a blackbody

eeff is the effective emissivity of the material

Tb is the corrected black body temperature from the pyrometer, K

Ts is the surface temperature from the thermocouple, K

Thus, the emissivity of the material, eeff, can be calculated by

(8)

2. Leading edge arc jet model

The third objective of this test series is to investigate geometry effects and materials applications.

It is believed that the diborides can be used as reusable material for leading edge application for

future hypersonic vehicles. In fact, the diboride materials were used to construct the leading edges

and nose tip for the Air Force FDL-5A lifting body program (ref. 6). The results were not encourag-

ing due to thermal stress problems. In recent years, the manufacturing process has been improved, so

it is reasonable to re-evaluate the performance of diborides as a potential material for leading edge

configurations. The leading edge radius chosen for the arc jet model is 0.953 cm. This value is based

on the the full scale dimension of the leading edges radius of the NASP (ref. 8).

Figure 4 shows the exploded view of components of the leading edge model for the Advanced

Refractory Ceramic Materials phase H arc jet test. The design consists of two removal end caps,

main body and back plate. Each end cap is aligned with the main body by two guide pins and

attached by two machine screws. The leading edge is held by the end caps with two tungsten pins.

The main body is insulated from the high temperature leading edge by the grafoil.

The contours applied on the main body and radius on the end caps are the design's main features

which minimize the shock impingement from the oblique portion of the bow shock. Another impor-

tant feature in the leading edge model is the attachment between the back plate and main body. The

back plate is in contact with the leading edge assembly only at the attachment areas where the screws

are located. This minimizes the heat transfer from the body to the plate and takes advantage of cool-

ing by convection. The whole assembly is then mounted on the facility water cooled strut. Notice

there is no additional cooling shroud placed in between the test model and facility strut. This is due

to the considerable drop in heat flux at locations away from the stagnation point. The test conditions

imposed on the leading edge model are similar to those of NASP flight conditions. In this case, the

imposed heat fluxes range from 260 to 817 W/cm 2 and the enthalpy is in the range of 18.6 MJ/Kg.
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Figure 4. Isometric view of leading edge model.

3. Nose tip model

The use of diboride materials for nose tip applications is also being considered, in particular for

the Pegasus SWERVE (Sandia Winged Energetic Reentry Vehicle Experiment) program. The test

model consists of a nose tip and a skirt made of diboride material, a graphite sleeve and a tungsten

strut. These components shown in figure 5 are assembled into a slender cone with a small blunt nose

tip that is similar to the SWERVE configuration. The test model is then mounted on a water cooled

cone shroud (not shown) which is installed on the facility model support system. The flare in the

skirt and sleeve is used to deflect the attached shock to prevent flow impingement which might result

in melting of the facility strut.

The purpose of designing this model is to study the thermal performance of the diboride materi-

als in a high heat flux and very low Reynold's number flow regime. Because of the small radius, the

nose tip model will experience rarefied or non-equilibrium flow. Mass loss measurements are taken

at post test, and the recession rate is evaluated by using the high speed motion picture film.

CONCLUSION

It is shown that the size and geometry of an arc jet test model can be calculated by using simple

heat transfer equations. The flow field requirement and shock shape are also important factors in

selecting the final model geometry. If the model radius is too small, a rarefied flow regime results,

which has a more severe effect on the thermal performance of materials. The model however needs
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Strut adapter
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Figure 5. Isometric view of nose tip model.

to be large enough if optical and thermal property measurements are to be obtained. In the Advanced

Refractory Ceramic Materials phase H arc jet tests, three model assemblies are designed to satisfy

the test objectives. The coupon sample model increases the sample size from 1.27 cm in phase I to

3.56 cm in diameter in phase II. Its holder is designed to provide 1-D heat transfer to the sample and

adequate protection for facility hardware. Leading edge and nose tip models are designed to fulfill a

third test objective of determining geometry effects on material performance. These models and

holders are used to study material performance in a rarefied flow regime and to ascertain possible

applications for future hypersonic vehicles.
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INTRODUCTION

9,, /2.

In order to support humans on a Lunar base or a mission to Mars, the essential elements for life

support, namely water, food, and oxygen, must be supplied. The Controlled Ecological Life Support

System (CELSS) program defines a regenerative life support system which supplies these elements

with a minimum of resupply and waste. The primary goal of the CELSS program is to provide the

major components of life support in a closed system which operates with stability and efficiency.

The conceptual diagram of a CELSS is shown in figure 1. The figure focuses on the four major com-

ponents of the closed system, (1) biomass production or plants, (2) food processing, (3) humans, and

(4) waste processing, and how materials and gases flow from one component to another. The next

step of identifying and meeting the detailed requirements of the CELSS system will be accomplished

through scientific experimentation and technology development in space and on the ground.

Food
Food

processing

Harvest Waste

Biomass Crew

production

CO 2

Nutrients

Waste

processing
Waste

Figure 1. Conceptual diagram of a CELSS.
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The CropGrowthResearchChamber(CGRC)hasbeendefinedby CELSSprincipal investiga-
tors andscienceadvisorypanelsasanecessaryground-basedtool in thedevelopmentof aregenera-
tive life supportsystem(refs. 1and2). Thefocusof CGRCresearchwill beon thebiomass
productioncomponentof theCELSSsystem.

Theground-basedCropGrowthResearchChamberis for the studyof plant growth and devel-

opment under stringently controlled environments isolated from the external environment. The

chamber has importance in threeareas of CELSS activities: (1) crop research, (2) system control and

integration, and (3) flight hardware design and experimentation. The laboratory size of the Crop

Growth Research Chamber will be small enough to allow duplication of the unit, conduct of con-

trolled experiments, and replication of experiments, but large enough to provide information repre-

sentative of larger plant communities. Experiments will focus on plant growth in a wide variety of

environments and the effects of those environments on plant production of food, water, oxygen,

toxins and microbes. To study these effects in a closed system, tight control of the environment is

necessary.

CROP GROWTH RESEARCH CHAMBER DESCRIPTION

The CGRC is a closed (sealed) controlled environment system designed for the growth of a

community of crop plants with separate, recirculating atmospheric and nutrient delivery systems. In

the CGRC, various combinations of environmental factors can be selected and the influence on

biomass, food, water, and oxygen production of crop plants investigated. Also, measurement of plant

produced toxins and microbial activity will be performed to determine if control of these elements

will be necessary in a CELSS. Strict environmental control, closure or sealing of the system, and

conservation of mass in the system are essential to measure the effects of various environments on

crop production rates.

The CGRC is unique in that it will provide environmental control of more parameters over wider

ranges and with higher accuracies than any other closed plant growth chamber_ It will also take the

next step in gas control by monitoring and selectively removing constituent gases as necessary to

maintain setpoints. Table 1 details the CGRC control variables, their ranges and accuracies.

As shown under the physical specifications, the maximum allowable leak rate is extremely low.

It can be achieved theoretically, however, the challenge occurs when purchasing off-the-shelf

components such as motors, heaters, and compressors to maintain this level of closure. Also, the

ratio of the growing volume to the total air volume is required to be at least 30%. This requirement

stems from the necessity to measure toxins produced by the plants. If the growing volume is much

smaller than 30% of the total air volume, small amounts of toxins produced by the plants will be

diluted and may not be measurable.

A simplified block diagram of the CGRC is shown in figure 2. Each system is shown as a block

and will be described in the following paragraphs. The sealed portion, commonly called the

chamber, includes the growing volume, the ducting, and the air-conditioning system. The other

systems are located extemal to the chamber and are interfaced to the chamber through ports located
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Table 1: Design parameters table 2

Physical specifications Limits

1. Closure

a. Leak Rate

2. Size

a. Total Air Volume

b. Growing Volume

c. Growing Area

< 0.5% of total CGRC air volume day -1

15 m 3

> 30% of total CGRC air volume

-- 2.0 m 2

Environmental Control Control Range Control Accuracy

1. Shoot Zone

a. Air Temperature

b. Air Pressure

c. Relative Humidity

d. Air Composition

Nitrogen

Oxygen

Carbon Dioxide

e. Air Velocity

f. Photosynthetic Photon Flux

Nutrient Solution in Hydroponic Reservoir

a. Temperature

b. pH

c. Conductivity

d. Oxygen Concentration

.

15-40oc

+108 kPa (absolute)

35-90%

750-950 mmol mo1-1

50-250 mmol mol --I

25-50k t.tmoi mo1-1

0.3-1.0 m s -1

0%, 30%-100%

15-40oc

4.0-8.0

50-500 mS m -1

5-20 ktmol mo1-1

+lOC

±1.6 kPa

+_3% RH

+1.6-2.7 mmol mol -la

+1.5-2.5 mmol mol -la

+ 5-500 ktmol mol -la

+10%

+15%

+lOC

_+0.1 units

+10 mS m-1

_+0.5 _tmol mo1-1

aMeasured accuracy.

Tested using the Engineering Development Unit

on the chamber walls. Even though these systems are physically external to the chamber, they
maintain closure.

The growing volume includes the shoot zone where the plant shoots grow, the root zone where

the plant roots grow in a hydroponic solution, and the subroot zone where the hydroponic nutrient

delivery system piping is housed. The shoot zone and the root zone are separated with a medium

located at the base of the plant stem, providing isolation of the shoot from the root environment.

Both environments must be maintained independent of the other; the goal is to have no movement or

migration of materials between the environments except for what is conducted through the plants

which are continuous between the environments. Separation of the shoot zone from the root zone is

necessary for accurate measurement of plant transpiration, carbon dioxide uptake, oxygen produc-

tion, and toxin production in the shoot zone, and microbial monitoring and nutrient usage in the root

zone. Environmental parameters controlled in the growing volume include air temperature, chamber

pressure, relative humidity, air composition, air velocity, and lighting (photosynthetic photon flux).
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Figure 2. The crop growth research chamber block diagram.
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Parameters controlled in the hydroponic reservoir which feeds up to 3 different nutrient solutions to

the root zone are solution temperature, pH, conductivity, and oxygen concentration.

The air from the growing volume is transported through the ducting to the air-conditioning

system which controls temperature, relative humidity, and velocity. The pressure control system port

is located in the air-conditioning system and upstream of the gas removal and separation systems, to

allow any air that enters the airstream from the pressure control system to be conditioned prior to

entering the growing volume.

The light cap houses sixteen, 1000 watt, high-pressure sodium lamps which provide photosyn-

theticaUy active radiation (wavelength = 400-700 nanometers) required for photosynthesis. The

water filter located directly below the lamps consists of temperature controlled water flowing on the

glass ceiling of the chamber. The water and glass filter out the longwave radiation to reduce the heat

input to the chamber and to maximize the percentage of energy input that is photosynthetically

active. A hood covering the light cap is required to prevent extraneous light from entering the

chamber since only radiation from the overhead lamps can enter the chamber.

The gas makeup, removal and separation systems control the levels of nitrogen, carbon dioxide

and oxygen within the chamber by selectively removing Or injecting constituent gases. The gases

removed and injected are quantified in order to determine how much of each gas is consumed or

produced by a particular crop under pre-determined environments.

The hydroponic reservoir contains the nutrient solution which is fed to 10 plant trays located in

the root zone. Three different solutions will be available to feed to the 10 trays to allow for random

testing of various nutrient solutions. The control of the solutions' compositions is automated and

recorded to determine the uptake rates of various chemicals by the plants.
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Thecontrol anddataacquisitionsystemsallow for control of all theparameterslistedin table 1
asis shownby thedottedlinesencompassingthesystemsin figure 2. Measurementsmadewithin the
chamberwill serveasfeedbackto thecontrolsystemandasscientificdatathatwill be further
utilized in calculationsandmanipulationsto investigatetrendsin thevariousparameters.

Not only is thedesignof eachseparatesystemtechnicallychallenging,but the integrationand
control of thesystemasawholemakestheCGRCthefirst of its kind.

ENGINEERING DEVELOPMENT UNIT

A Science Advisory Review for the Crop Growth Research Chamber (CGRC) was held in

February 1990 to review the preliminary designs. Due to discussions and concerns regarding the

CGRC's air-conditioning system design and the need for control system hardware and software

experimentation, it was decided to build an Engineering Development Unit (EDU). The main pur-

pose for building the EDU was to test the hardware and software necessary to control temperature

and relative humidity within the wide ranges and high accuracies listed in table 1. Therefore, the

EDU includes only the air-conditioning system and control components necessary to control temper-

ature and relative humidity. Closure was not a goal of the EDU, although steps were taken so closure

could be simulated in order to accurately assess control.

A simplified diagram of the EDU is shown in figure 3. The variable speed fan is required to

control the air velocity inside the chamber from 0.3 to 1.0 m s-1 + 10%, as measured from the top

plane of the plant canopy. The dampers determine the amount of airflow that is partitioned through

the coil and through the bypass. They are controlled by the linear actuators. Most of the air flows

through the bypass in cases when the plants are small and do not transpire heavily enough to require

dehumidification of the air. In cases when the plants are large and transpire substantial amounts of

water, most of the air is passed through the coil for dehumidification. The electric heater provides

reheat for points on the envelope in which too much heat is extracted by the coil in order to obtain

the correct relative humidity.

HUMIDIFIER

t
HEATER]

Airflow-_-_

_-- Absorption length --_

8 LAMPS

GROWING VOLUME

Diffuser

DampersL_ \
\ _ '

1

I

I

I

,H
I

I

I

I

CONTROL& I
DATA ACQUISI_ON

SYSTEM

Figure 3. Engineering development unit block diagram.
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To developabetterunderstandingof thethetemperatureandrelativehumidity control
requirements,seefigure4. Theslashedportionof thegraphhighlightstheminimum air temperature
attainabledueto theminimumwatertemperaturedeliveredby thewaterchiller, which coolsthe
waterenteringthecoolingcoil. Theshadedportion of thegraphshowsthetemperaturesandrelative
humiditiesnot achievabledueto thecharacteristicsof thecoolingcoil. What makesachievingthe
requiredrangesochallengingis theuseof off-the-shelfcomponentswhich aredesignedto control
temperatureandrelativehumidity oververy smallrangesandwith low accuracies.For example,
temperaturecontrol requiredfor abuilding's air-conditioningsystemis typically 20-26°C with no
setcontrol accuracy,exceptto notethatthesystemshouldreheatwhenthetemperaturedropsbelow
20°C. And relativehumiditycontrol for abuilding is normally50%+10% RH (ref. 5). Therefore,

trying to use off-the-shelf components to attain ranges and accuracies for which they were never

designed is difficult. Also, temperature and relative humidity are dependent upon each other. For

example, a change in air temperature with a given specific humidity will cause a change in relative

humidity as shown on a psychrometric chart (ref. 4). These realities become even more challenging

when controlling temperature and relative humidity in a closed environment.

I_ required range
[] minimum dewpoint limit
• coil capability limit

_1
m_m

' :: ""1

0 5 10 15 20 25
Temperature (Celsius)

9O

80

70

30 35

60 Relative
humidity

50 (%RH)

40

30

20
4O

Figure 4. Envelope for control of temperature and relative humidity.

The five goals of the EDU are listed below.

o Perform hardware performance evaluations of the air-conditioning (AC) components to

ensure that they are sized properly and function according to the manufacturers' specifica-

tions. The AC components include the fan, the coil, the actuators which control the dampers,

the heater, the humidifier, the water chiller, and the mixing valve which controls the water

temperature entering the coil.
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2. Evaluatetheoperationandplacementof sensors to provide for accurate and reliable feed-
back information.

3. Evaluate the computer system, both the software and input/output hardware, to determine

suitability for the final CGRC.

4. Develop a working control scheme for temperature and relative humidity control over the

required range shown in figure 4.

5. Perform tests to determine if and how the AC system volume can be reduced.

The results obtained from the testing of the EDU are summarized in the following text.

1. Hardware performance evaluation

Most of the hardware performed as expected and according to the manufacturer's specifications.

The components that differed from the manufacturer's specifications and from the project's expecta-
tions are detailed below.

The variable speed fan is required to control the air velocity inside the chamber from 0.3 to

1.0 m s-1 + 10%, as measured from the top plane of the plant canopy. The fan was able to perform

these requirements and can actually produce air speeds lower than 0.3 m s -l, however, the lowest air

velocity measurable with the flow sensors is 0.3 m s -1.

The dampers, controlled by linear actuators, manipulate the amount of airflow through the coil

and through the bypass to control temperature. The range of airflows available through the coil vs.

damper positions were tested and determined if linear. The airflow with respect to damper position is

linear only when the actuators are working in the 10% to 50% range. Tables reflecting this data were

stored in the computer and are used to generate the proper actuator command to produce the required

airflow necessary for temperature control.

The heater does not have the capacity to reach the high temperature points for which it was

intended because the energy input to the EDU is much smaller than anticipated. Specifically, the heat

input from the lamps is only 1 kwatt as compared to the 6 kwatts expected. The heater had to com-

pensate for both the heat that the lamps were expected to provide and the heat lost due to leaks in

order to test the control algorithm for the final CGRC, which is expected to have 6 kwatts of energy

input from the lamps. Therefore, the heater had insufficient capacity to reach the high temperatures.

Since it is expected that the CGRC will have 6 kwatts of energy input from the lamps due to closure,

the heater's capacity will be sufficient to reach the high temperature points.

2. Sensor evaluation

Temperature, humidity, air velocity, and photosynthetic photon flux (PPF) are measured using a

variety of sensors. Only problems associated with temperature and humidity measurements were

experienced. The thermocouples initially used for temperature feedback, accurate to I °C, were

replaced with resistance temperature detectors (RTD's), accurate to 0.2 °C. This allowed for much
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tighter control.Also, theRTD's locatedinsidethechamberareshieldedandaspiratedto negateany
effectsfrom theoverheadlamps.Chilled mirror sensorsarethemostaccuratefor measuringthedew
point to obtainrelativehumidity. However,sincethe air swirls within thechamber,evenunderthe
planttray, the readingsfrom thechilled mirror wereunstableandCouldnot beusedfor control.
Therefore,Vaisala® temperature(measuredwith anRTD) andrelativehumidity sensorsareusedto
provide feedbackfrom thechamberandat setlocationsin theducting.TheVaisala®sensors,cali-
bratedat thefactorywith achilled mirror sensor,arevery stableandaccurate.Theyaresturdy,easily
mountedandeasilyintegratedwith thecomputersystem.TheVaisalasensorlocatedinsidethe
chamberis alsoshieldedandaspiratedto negateanyeffectsfrom theoverheadlamps.

3. Controlsystemsoftwareandhardwareevaluation

A processcontrolsystemsoftwarepackagewasusedonanIBM PCcompatibleandworkedwell
for thisapplication.It wassimpleto developandexperimentwith variouscontrol algorithmsbecause
of its intuitive graphicalformat.Theinput/outputhardwarewhichprocessedfeedbackinformation
from the sensorsandsentit to thecomputervia onetwisted,shieldedcablealsoworkedverywell.
Boththe softwarepackageandtheinput/outputhardwarewill beusedon theCGRC.

4. Control schemedevelopmentfor temperatureandrelativehumidity control

The first control schemetestedwasacomplexcontrol algorithmdevelopedfrom amathematical
modelof theEDU onMatrixx®, acontrolsmodelingandsimulationsoftwarepackage.In testingthis
control schemeit wasnotedthatactualcontrol couldbeaccomplishedwith amoresimple,straight-
forwardcontrol scheme.Thesimplecontrol schemeactuallycontrolledtemperatureandrelative
humidity betterthanthecomplexalgorithmandwaseasierto manipulate.This control scheme,
shownin figure 5, consistsof two proportional,integral,derivative(PID) loops.OnePID controls
thedamperpositionsfor temperaturecontrol andtheotherPID setsthemixing valveposition for
humidity control.Forhumidity control, anestedloopwasnecessaryto effectively controlthe tem-
peratureof thewaterenteringthecoil, thereforefeedbackof thetemperatureof thewaterentering
thecoil wasfedto anotherPID. In conclusion,theAC design,control hardware,andcontrol soft-
wareprovedsuccessfulin meetingthegoalsof theCGRCRequirementsSpecificationfor controlof
temperatureandrelativehumidity (ref. 3).

Control wasestablishedfor over90%of therequiredrangeshownin figure 4 to within 1°C and
3%RH. Somehigh humidity,high temperaturepointson the envelope in the upper right hand comer

of the graph are not obtainable due to the leak rate of the EDU. The heater and the humidifier cannot

keep up with the leak rate at the high levels. It is expected that these points will be achieved in the

CGRC due to closure. Some low humidities and low temperatures on the bottom, left portion of the

graph cannot be achieved due to the chiller and coil characteristics. The chiller must cool water trav-

elling through the coil to a minimum of 8 °C in order reach these points. The 120 foot long pipeline

from the chiller to the coil is insulated to minimize heat gains, however, the water entering the coil is

10 °C at its coldest. Therefore, some of the lower temperatures and relative humidities cannot be

reached and will not be achieved in the CGRC. Some high humidity points, located along the 90%

relative humidity line, could not be reached in the EDU. These points could not be reached due to the

leak rate, the lack of plant transpiration (because plants were not grown in the EDU), and the lower
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Figure 5. The EDU control scheme block diagram.
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level of heat input from the lamps than expected. It is anticipated that these points will be achieved

in the CGRC due to closure.

5. AC volume reduction

The two main drivers behind the volume of the AC system are the coil size and humidifier

absorption length. The coil area is large to prevent air from traveling too fast across the coil such that

condensed water flies off into the ducting. The scientists require that no water flies off the coil

because gases that are being measured can dissolve in that water. The humidifier absorption length

was determined from the manufacturer's recommendation to allow for complete absorption of the

steam into the air before it enters the chamber. Steam is not allowed to enter the chamber due to

plant stress and to eliminate water droplets in which gases could dissolve. Tests were conducted to

determine if the coil area could be reduced and if the humidifier absorption length could be

shortened, while maintaining the same level of control.

Tests concluded that reduction in the area of the coil can possibly be achieved by increasing its

length, thus maintaining the total energy removal capacity of the coil. Decreasing the area of the coil

will decrease the diffuser outlet area and the diffuser length, therefore decreasing the AC system

volume. Further analysis will determine exactly how much the coil face area can be reduced. Identi-.

fying the location of the actual absorption of the steam along the duct proved that the humidifier

absorption length may also be reduced without allowing steam to enter the chamber.

FUTURE WORK

Results from the testing of the EDU are currently being applied to the final designs of the air-

conditioning system. Detailed designs of the chamber are almost complete and preliminary designs

of the hydroponic, pressure control and gas control systems are underway. Testing of the pressure
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controlsystemandtheoxygenremovalsystem,partof thegascontrol system,will occuroverthe
next few months.Also, amodelof theEDU which wascreatedto developcontrol schemesfor
temperatureandrelativehumiditycontrol is beingexpandedto includetheothersystemsin the
CGRC.

CONCLUSION

Since the CGRC is the first of its kind, it was necessary to build an EDU in order to gain experi-

ence in designs never before tried. Testing of the EDU allowed design engineers to gain experience

with the air-conditioning hardware and sensors, and enabled the development of a working control

scheme for temperature and relative humidity control. It also provided added confidence in the pos-

sibility of shrinking the size of the cooling coil and reducing the humidifier absorption length. All of

this knowledge gained will make the CGRC a better research tool for the study of plant growth in a
closed environment.
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As the U.S. space program plans for a return to the Lunar surface and ultimately for a mission to

Mars, space suits and portable life support systems will have to keep pace to meet the exploration

mission requirements. The systems currently in use with the Shuttle program will not be adequate for

exploration on the Martian surface or for extensive exploration and work on the Lunar surface.

Currently, there are too many unknowns regarding locomotion and work physiology in reduced

gravity to accurately design advanced suits and life support systems for routine extravehicular

activity (EVA). It would be unwise and costly to arbitrarily develop new designs without first

studying how the human body moves and works in these environments. This paper discusses the

current state of the art of EVA space suit and portable life support system (PLSS) design, and how

this compares to the requirements for suit and PLSS design to meet the needs of advanced explo-

ration missions. Current research underway in the Extravehicular Systems Branch at Ames Research

Center aimed at advanced system design will be highlighted.

THE CURRENT HARDWARE

Although it is satisfactory for the current Shuttle program, the space suit presently used on the

Space Shuttle will not be adequate for future advanced missions. The Shuttle suit operates at

4.3 pounds per square inch (psi) internal pressure, requiring an extended decompression profile to

allow the EVA astronauts to go from a 14.7 psi craft to a 4.3 psi EVA suit. The Shuttle pressure is

first lowered to 10.2 psi for 24 hours before the planned EVA. The EVA crew then breathes pure

oxygen for 45 minutes prior to embarking on the EVA. Even after this extensive preparation a

significant bends risk on the order of 5% still exists. In addition, the lowered cabin pressure can

cause overheating of the air-cooled electronic systems on the shuttle.

The Shuttle suit also requires a great deal of effort to flex the joints because the suit does not

maintain a constant volume. When a joint is flexed and then held in a fixed position, the astronaut

must contract his/her muscles isometrically to keep the joint flexed. This extra effort can lead to

local muscle fatigue early in an EVA.

The extravehicular mobility unit (EMU) is not designed to be space-based since it is not easily

maintained nor is it as rugged as would be required for frequent use. It is certified for only 3 uses and

then it must be torn down completely and overhauled. These maintenance requirements virtually

exclude both the Shuttle suit and EMU from being used for advanced missions.

There are currently two prototype suits developed for 0-gravity (g) EVA use on the Space Station

as well as other microgravity situations. Ames Research Center developed the AX-5 and Johnson
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Space Center developed the MK III. Both suits operate at 8.3 psi. If used in a 1 atmosphere (atm)

base or cabin, these suits minimize prebreath time. These suits were designed for 0-g operations,

however, rather than for walking or other planetary surface operations.

REQUIREMENTS FOR ADVANCED HARDWARE

Although there are elements which we know little about, there are some general parameters of

advanced suit and PLSS design that can be used in developing advanced concepts. Ideally, advanced

design concepts should improve the work capability of the EVA astronaut thereby increasing the

amount of productive labor per EVA hour. An advanced suit should also maximize productivity

while minimizing fatigue. One way to accomplish this is to minimize both the dynamic and static

suit joint flexure forces. The suit mobility joints must also be designed to allow the degrees of free-

dom and range of motion required to perform the EVA tasks. Emphasis on comfort will be much

more important for advanced missions because extravehicular operations have the potential of being

much more routine and of longer duration. Designs which were tolerable for short missions with

infrequent EVAs won't be acceptable for longer ones.

An advanced suit should also have the correct ratio of suit pressure to base or cabin pressure in

order to eliminate pre-breathe and to decrease the bends risk. An advanced concept suit designed to

operate at, or very near, cabin or base pressure could eliminate pre-breathe problems. A suit that can

operate well at 9 or 10 psi would be ideal if the cabin or base pressure is 14.7 psi.

The remoteness and duration of a Mars mission will require every element of the mission be

optimized for function, reliability and efficiency. Logistical problems such as how much support

system mass must be launched to maintain the suit/PLSS must be addressed. The weight and volume

of the unit could be minimized by efficient packaging. In addition, an advanced suit/PLSS unit must

also be easily maintained. If Lunar exploration is to become more routine than what was done in the

Apollo program, a new life support system will have to support more physically taxing work and be

more efficient at removing metabolic heat quickly and effectively. Research into metabolic rates

achieved with varying levels of EVA work may help us to understand what types of heat removal

rates a future PLSS would have to provide.

The biomechanical and physiological assumptions about how an advanced concept suit and

PLSS must perform need to be confirmed by experiment. Research must be performed and the

results compared with mission requirements for extravehicular operations.

CURRENT EXPERIMENTS UNDERWAY AT AMES RESEARCH CENTER

One question that needs to be addressed with regard to an advanced concept PLSS is how to

effectively and efficiently maintain thermal comfort throughout an extended orbital EVA. Currently,

when more warmth or cooling is needed within the suit, the astronaut controls the action of the liquid

cooling garment (LCG) by manually adjusting a knob on the suit. This takes away from an astro-

naut's work time and it is also inefficient. Operational experience with the current EVA system

shows the astronaut's heat balance is poorly controlled, resulting in some areas of their body being
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warm while they are simultaneously cold in other areas. Studies show that both skin temperature and 
internal body temperature may be important indicators of the state of thermal comfort (refs. 1 and 4). 
Another study purports that a linear relationship exists between skin temperature and metabolic rate 
and that a linear relationship also exists between the evaporation of sweat and metabolic rate (ref. 3). 
Therefore it’s possible that an advanced heat balance system could “read” an astronaut’s metabolic 
rate by way of some non-invasive sensor and then automatically change its cooling function without 
the astronaut having to do anything but continue hisher work. This could lead to not only greater 
overall thermal comfort and a more stable heat balance but it would also allow longer EVA sessions 
with less chance of astronaut fatigue due to over or under cooling. 

In order to pursue this thermal comfort question as well as attempt to simulate the metabolic cost 
of orbital EVA, a set of experiments was designed to simulate orbital EVA and to quantify the 
physiological cost of the activity (ref. 12). Using three male subjects, exercise experiments were per- 
formed on a unique upper body arm crank device (figs. 1 and 2). The device provides four degrees of 
freedom of movement: roll, pitch, yaw, and a linear motion aligned with the spine. The bench on 
which the subject lies is supported by a gimballed shaft. The subject’s body weight is counterbal- 
anced by weights at the opposite end of the shaft. Thus, when the shaft is in the unlocked position 
(the actual EVA simulation situation), the subject reacts all forces at the feet which are secured in 
foot restraints that do not move relative to the ground. The device can also be used in the locked 
position in which the shaft remains immobile and the subject does not have to counterbalance 
himself using his feet. 

The first series of experiments which were recently completed were designed to correlate this 
new exercise technique and to demonstrate its utility as a 0-g EVA work simulation device. Five 

Figure 1. The extravehicular activity simulation device located at Ames Research Center. 
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Figure 2. The extravehicular activity simulation device housed in its environmentally controlled 
chamber. 

exercise protocols were used: (1) a low level constant workload (25 watt work output); (2) a moder- 
ate level constant workload (65 watt work output); (3) a high level constant workload (100 watt work 
output); (4) a transient workload; and (5) a maximum output protocol in which the subject cranked as 
hard as he could for 1 minute after a five minute warm up. For these initial tests, subjects were 
dressed in exercise shorts with no cooling system. First, a control situation was implemented in 
which subjects sat upright in front of the ergometer and performed the various protocols to correlate 
this exercise device with other upright arm crank research. Preliminary findings on oxygen uptake 
are comparable to other studies utilizing upright arm crank exercise (refs. 2, 7, and IO) (fig. 3). The 
subjects were then put on the device in the supine position and did all protocols at least three times in 
both a locked and unlocked position. Subjects came to the lab 2 or 3 times per week and performed 
1 protocol per session until all test situations were completed. Subjects performed identical work 
protocols in both the locked position and unlocked position in order for the investigators to observe 
the metabolic rate and other physiological parameters when isometric lower body stabilization forces 
had to be performed by the subject. 

c. 

Results from these experiments are currently being reduced and analyzed but preliminary tind- 
ings suggest the average metabolic rate reached in three of the protocols, the low constant workload, 
the moderate constant workload, and the transient workload, most closely mirror the average 
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Figure 3. Comparison of oxygen uptake between two seated uptight arm crank ergometry studies. In

Williamson et al., (ref. 12), 3 male subjects exercised at 35, 65, and 100 watt constant work outputs.
In Stenberg et al., (ref. 7), 6 male subjects exercised at various constant workloads from I-4 sessions
each.

metabolic load of actual EVAs (refs. 5, 8, and 9) (table 1). This suggests the exercise protocols may

not only replicate the genetic muscular movements of an average EVA (i.e., dynamic upper body

work combined with isometric lower body work), but that the metabolic loads on the subject may be

quite similar to that of EVA astronauts. Although the higher constant workload protocol elicited

higher average metabolic costs than those thought to occur during orbital EVA, these data will indi-

cate the upper limits that must be understood in order to build a controller capable of keeping an

astronaut comfortable during short periods of hard work.

Once data analysis is finished, experiment findings will be submitted in the form of a formal

journal article. In addition, another set of similar exercise experiments with a larger subject pool will

be conducted to reconfirm the data. After analyzing data from these follow-on experiments, a proto-

type controller will be developed. Exercise experiments with subjects wearing the prototype con-

troller will then be conducted to provide more information on how heat balance and thermal comfort

during an EVA can be manipulated by a control system.
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Table 1. Comparison of metabolic rates on actual mission EVAs (refs. 5, 8, and 9) and a

simulated EVA study performed at Ames Research Center (ref. 12).

ACTUAL EVA METABOLIC RA YES FROM VARIOUS PROGRAMS*

Program

Apollo
1/6-g
0-g

Skylab

Shuttle

Mean rate for entire

program (kcal/hour)

235

151

238

197

Range of rates for entire
EVAs (kcal/hour)

197-302

117-504

145-330

152-275

METABOLIC RATES FROM SIMULATED EVA STUDY

(SUPINE UNLOCKED POSITION) AT AMES RESEARCH CENTER**

Exercise

protocol

Low
(constant 35 watt output)

Moderate
(constant 65 watt output)

igh
constant 100 watt output)

Transient

Mean rate for entire

test***(kcal/hour)

154

219

352

225

i

Range for entire
test***(kcal/hour)

32-401

24-654

34-849

44-676

*Three methods were used to estimate real-time metabolic rates:

1. Heart rate

2. Oxygen usage (computed from the decrease in oxygen bottle pressure per unit time).

3. Difference in temperatures of the coolant water flowing into and out from the LCG.

**Standard laboratory method of measuring oxygen consumption/carbon dioxide production with

gas analyers was used.

***Excluding 2 minute warm up at beginning of tests.
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Another factor that must also be understood to optimize an advanced suit and PLSS is an under-

standing of both the allowable load carrying limits and acceptable perturbations to the center of

gravity (c.g.) in simulated planetary surface EVAs. This will provide guidance as to how much a

PLSS can weigh and how/where the load of the unit should optimally be placed relative to the astro-

naut's body. In the Martian environment of 3/8-g, the weight of the unit is especially significant as is

the placement of the PLSS upon the suit. A unit that is too heavy or that has the PLSS placed in such

a way as to hinder the astronaut's activity would make EVAs difficult and possibly dangerous.

A set of experiments is currently being performed to assess the effect of reduced gravity levels

on various measures of work performance in human load-carrying capability during planetary EVA

(ref. 11). Tasks such as walking, kneeling down from and returning to an upright posture, lifting

boxes of graduated weights, and positioning boxes at various locations while the subject's c.g. has

been displaced from normal are activities of interest to the investigator in order to observe how load

placement affects astronaut movement and productivity.

The first round of these experiments was conducted on the KC-135 aircraft at NASA Johnson

Space Center. During 2 days of testing, 50 Martian and 95 Lunar parabolas were flown. Five male

subjects wore a Variable Load Positioning Backpack (VLPB) which placed a 50 pound load at one

of two extreme locations: high on the back, at the location of the current shuttle PLSS c.g.; or low on

the front torso, at the same horizontal distance from the body's centerline as the high back location

but at the vertical height of the normal body c.g. Subjects performed several lifting, positioning, and

treadmill walking tasks with the load in the two different locations. All tests were also videotaped for

biomechanical motion analysis. After the flights, subjects answered questionnaires regarding com-

fort, difficulty, stability, and control for each task and load position. Further experiments will be

conducted at the Ames Neutral Buoyancy Test Facility (NBTF) where additional measurements of

oxygen consumption, carbon dioxide production, heart rate, foot to treadmill contact forces, joint

movement ranges, and body segment trajectories will be taken in order to further investigate these

issues. Once data have been analyzed, an analytical biomechanical model will be developed to

provide a more thorough understanding of the role of reduced gravity in human load carrying and

optimal load placement. Results from this study are expected to have significant effect on the design

of future planetary EVA suits and PLSS design/placement by giving design engineers new informa-

tion on optimal load placement and suit structure.

Modeling the biomechanics and mobility of humans performing simple planetary locomotion is a

third area that needs investigation in order to drive advanced suit design. Identifying gait, transition

speed, and oxygen consumption during locomotion is a critical first step in the understanding of

human performance in partial gravity. Quantifying workloads encountered and the energy cost of

planetary locomotion will help define oxygen consumption and carbon dioxide production

requirements for planetary life support systems.

Newman and colleagues recently completed a study investigating the biomechanics and energet-

ics of locomotion in reduced gravity environments (ref. 6). The study took place at the Ames NBTF.

Six subjects (4 male, 2 female) were used in this study. Each subject completed six experimental

sessions. One session was a 1-g control experiment with the subject exercising on the treadmill

outside the NBTF. The remaining five sessions took place underwater in the NBTF with the subjects

breathing through modified commercial diving gear (fig. 4). Partial gravity loads were provided by
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an adjustable loading harness on the subjects which distributed lead weights ranging from 0% to 
100% of their dry body weight. The subject’s body-segment masses and inertial properties deter- 
mined the amount of weight required to simulate partial gravity loading. Weights were distributed on 
five regions and balanced across the mass center of the left lower leg, right lower leg, left thigh, right 
thigh, and torso. Five gravity conditions were simulated: 0-g, 1/6-g, 3/8-g, 2/3-g, and approximately 
full body loading (90-100%). Subjects walked at three speeds: 0.5 meters per second (m/s), 1.5 d s ,  
and 2.3 m/s during each of the experimental sessions. 

Vertical ground reaction forces were measured during each session while oxygen consumption, 
carbon dioxide production, and heart rate were sampled. Video data were recorded and manually 
analyzed by a computer program to encode the limb position. The data revealed a significant 
(p < 0.5) reduction in peak ground reaction force with a decrease in gravity level at all speeds. Stride 
frequency measurements indicated a general trend toward a loping gait as gravity level decreased. 
For locomotion at 1.5 m/s and 2.3 m/s, the plot of average stride frequency versus gravity depicted a 
non-linear reduction in stride frequency as gravity level decreased, while there was no significant 
difference in foot contact time for various gravity levels. This suggests that the aerial phase (time 
between toe-off and ground contact of the opposite foot) is significantly longer for partial gravity 
locomotion because the contact time does not vary with gravity level while the stride frequency 

Figure 4. The underwater treadmill at Ames Research Center 
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decreases.Theextendedaerialphase,or reductionin numberof stridesperminute,is typical of a

loping gait in which the subject's ground reaction force is greater than the pull of gravity; the subject

essentially propels himself/herself into an aerial trajectory for a few seconds during locomotion.

There was a reduction in oxygen uptake as gravity was decreased from the 1-g level. For loco-

motion at 1.5 rn/s and 2.3 m/s, a continuous decrease in heart rate was seen with decreasing gravity

level. However, for locomotion at 0.5 m/s, the results indicated an increase in heart rate. This sug-

gests that at low speeds, and low levels of gravity, proportionately more energy is expended in

stability and posture control than in locomotion itself. Interestingly, for locomotion at 0.5 rn/s during

the Martian simulation (3/8-g) subjects commented that this level was the "optimal and most com-

fortable" of all the partial gravity levels. Newman contends that the g-level threshold for humans

being able to locomote in a typical "terrestrial" upright posture using their legs effectively for

movement needs to be defined through future experimentation.

These three studies help fill a void in the knowledge on human locomotion and work capability

for the entire range of gravity between microgravity (0-g) and 1-g and could, when combined with

data from similar future studies, provide substantial information to space suit designers on how the

human body moves through space in reduced gravity environments and the energy requirements

associated with this movement. By studying how the human body most effectively works in these

environments, we will learn not only how to fabricate life support systems that will support such

work in space but we will also learn how to keep our astronauts safe. By understanding human

physiological limits, we can more adequately plan EVA schedules and planetary activities and

extend our exploration capabilities immeasurably.

.
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INTERFEROGRAMS, SCHLIEREN, AND SHADOWGRAPHS __

CONSTRUCTED FROM REAL-AND IDEAL-GAS, TWO-AND THe;.._

DIMENSIONAL COMPUTED FLOWFIELDS

Leslie A. Yates

Eloret Institute

Palo Alto, California

SUMMARY

The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solu-

tions permits one-to-one comparisons of computed and experimental results. A method for construct-

ing these images from both ideal- and real-gas, two- and three-dimensional computed flowfields is

described. The computational grids can be structured or unstructured, and multiple grids are an

option. Constructed images are shown for several types of computed flows including nozzle, wake,

and reacting flows; comparisons to experimental images are also shown. In addition, the sensitivity

of these images to errors in the flowfield solution is demonstrated, and the constructed images can be

used to identify problem areas in the computations.

INTRODUCTION

The development of techniques for comparing computed flowfield solutions with experimental

interferograms, schlieren, and shadowgraphs is vital for validation of ideal- and real-gas computa-

tional fluid dynamics (CFD) codes. Infinite- and finite-fringe interferograms can be transformed into

density fields only for two-dimensional (2-D) and axially symmetric non-reacting flows. In experi-

mental schlieren and shadowgraphs, several flow features including shocks, shear layers, and

expansion fans are recorded. When flow solutions are compared to these images, contour plots for

only one plane of data, usually the symmetry plane, are typically used. ff the flow is three dimen-

sional or the model is free to roll, no single computational plane provides all the information

necessary for realistic comparisons to experimental images.

The information required for the construction of interferograms, schlieren, and shadowgraphs is

contained in the flowfield solutions. By developing routines to evaluate and integrate appropriate

functions of the refractive index (n), direct comparisons of computed and experimental results can be

made. Constructed interferograms provide the basis for quantitative comparisons of line integrals of

n for reacting flows and the integrated density for non-reacting flows. With constructed schlieren and

shadowgraphs, the computed and experimental locations of shocks, shear layers, expansion fans,

separation, and reattachment can be compared. Constructed schlieren can also be used to compare

signs of line integrals of the gradient of n.

In this paper, CISS (Constructed Interferograms, Schlieren, and Shadowgraphs) is described.

CISS is software that constructs images from ideal- and real-gas, 2-D, axially symmetric, and

3-D computed flowfield solutions. The computational grids can be structured or unstructured, and
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multiplegrids areanoption.Resultsareshownfor severaltypesof flowfields, andtheeffectsof grid
resolutionandsolutionconvergencearediscussed.Comparisonsto experimentalimagesarealso
included.

CONSTRUCTING NUMERICAL INTERFEROGRAMS, SCHLIEREN,

AND SHADOWGRAPHS

Construction of interferograms, schlieren, and shadowgraphs from flow field solutions requires

three steps: (1) identifying and evaluating the appropriate functions of n, (2) integrating these func-

tions along lines of sight, and (3) post-processing the integrals to give the desired images. In this

section, these three processes will be described.

Functions of the Refractive Index used in Constructing Images

As light passes through the flow field, the phase shift and angle of deflection are obtained by

integrating functions of the refractive index along lines of sight. For ideal and non-reacting gases, the

refractive index is simply

n=l+_cp

where _: is the appropriate Gladstone-Dale constant for the gas and p is the density. For both equi-

librium and nonequilibrium real-gas computations, the species mass fractions vary throughout the

flow, and the refractive index is given by the sum of the contribution from each gas (ref. 1),

= 1 +n l(iPi

i

Here, K:i is the Gladstone-Dale constant and Pi is the partial density for the ith species.

Interferograms measure the phase shift between reference and object beams caused by variations

in the refractive index throughout the flowfield. When calculating interferograms from computa-

tional flowfields, the phase shift is obtained by integrating

2_

f(n) = ---_-(n - n 0)

along a line of sight. Here, no is the refractive index of the undisturbed flow and _, is the wavelength

of the light.

Schlieren are created in the laboratory by passing collimated light through the flow field, focusing

this light to a finite-sized point, using a knife edge to block out a portion of the light, and then

re-focusing the remaining light onto an image plane (fig. 1). The amount of light blocked by the
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Collimated Computed Knife Image
light flow field Lens edge Lens plane

Figure 1. Schematic for constructing schlieren.

knife edge is proportional to the angular deflection of the light; the deflection is caused by gradients

in the refractive index. The incremental change in the angular deflection at any point in the flowfield
is

lbn and _y=f(n)= l_n
5e x = f(n) = n O'-x" n 0---y

Integrating these fi,,--'-:--= "- ..... '- "-- _ ................

and ey.

In shadowgraphs, the image plane is not focused in the flowfield, but at some distance from it,

and the dark and light regions are caused by the concentration and divergence of light. In many text

books (e.g., refs. 2 and 3), the function used for constructing shadowgraphs is the line integral of the

second derivative of the refractive index. In CISS, the function used for constructing shadowgraphs

has been chosen to be equal to that used for schlieren. At the exit of the computational flowfield, the

angular deflection is known. If the distance to the image plane is also known, then the location on

the image plane where the deflected light falls is known. The shadowgraph is constructed by adding

the contribution of the deflected light beams at each point on the image plane. Using this method, the

thickness of the dark and bright regions is partially controlled by the position of the image plane.

This dependency of the dark and bright regions on the image plane' s position is observed in

experimental shadowgraphs.

Integration Scheme

Tracing the actual light path as it bends through the computational flow field and integrating the

appropriate function of the refractive index along this path is computationally expensive. The

resources required for producing constructed images can be reduced by approximating the light's

path by a straight line perpendicular to the image plane. For regions of the flow without shocks, this

approximation should have a minimal effect on the constructed images. In shock regions, the index
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of refractionchangesrapidly,andtheapproximationmayintroduceerrors;however,theseerrorsare
in manycaseson theorderof or smallerthanthesolutionandexperimentalerrors.

This approximationminimizestheneedfor searchroutines,andinterferograms,schlieren,and
shadowgraphscanbeconstructedwithout anyray tracing.For instance,consideranimagedefinedby
anM x N arrayof light 'ceils.' The value of the integral for the m,n element of the array is given by

Am, n = ff [n(xm,Yn,;)] d;

where the image plane is located at z and (Xm, Yn) are the x,y-coordinates of the light cell at the

m,n location in the array. The integration path can be broken into several segments

N Zi+l

Am, n=_ _ f[ n(xm'yn'_)]d_

i=l zi

In this expression, the line of integration enters the ith computational cell at zi and exits it at Zi+l

(fig. 2). In the actual solution procedure, no ray tracing of the line of integration through the flow-

field is necessary. By assuming minimal deflection of the light through the flowfield and approxi-

mating the light' s path by a straight line, the contribution of each computational cell to the line

integral can be found independently, and the order of evaluation and summation has no effect on the

final result. Therefore, for each computational cell, the integrals

Zi+l

f [n(xm'Yn';)] d;

zi

are evaluated for every Xm, Yn that fall within the cell, and the value of the integral is added to the

appropriate location on the image plane.

The test for determining if the point Xm, Yn falls within the computational cell is as follows. First,

to minimize the number of tests required, the maximum and minimum x and y values for the compu-

tational cell are found. Then the surfaces of the computational cell are described by triangles, and for

each triangle, three cross products are formed:

(X1 - Xmn) X (Xl - X2)

(X2 -- Xmn) X (X2 -- X3)

(X3 -- Xmn)X (X3 -- XI)

210



Z°

!

Z/+l

Computahonal grid

Image plane

/'////
//'////

/,///,///
X m

"//////

////'/

Figure 2. Schematic for integration process.

In these equations, Xmn gives the position of the light cell, and K1, x2, and x3 are the projections

onto the image plane of the vertices of the triangle. Testing is performed only for the Xm and Yn that

lie within the minimum and maximum x and y values for the computational cell. The sign for all

three cross products is the same if and only if the point lies within the triangle, and the triangular sur-

faces through which the line of integration enters and exits the computational cell can be determined.

Once these surfaces are determined, interpolated values for zi, Zi+l, f(Xm, Yn, zi), and f(Xm, Yn, Zi+l) at

the entrance and exit are obtained, and the line integral is evaluated. In CISS, three functions of the

refractive index are integrated simultaneously: n- 1, (1/n)_n/3x, and (1/n)_n/3y.

Construction of the Images

For infinite-fringe interferograms, the image intensity is simply proportional to the sine of the

phase shift _:

z

_b=-_ (n-no) d _

0

For finite-fringe interferograms, an additional phase is added:

= kxx + kyy

and the spacing and orientation of the freestream fringes are determined by kx and ky.
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For schlieren,theintensityis afunctionof the angulardeflection.As anexample,considera
horizontalknife edge(fig. 1)andarectangularsectionof the initial light sourcewith heighth. As the
rectangularsectionof the light sourcepassesthroughtheflowfield, it is deflectedandexits theflow
atanangle.When thelight exiting from theflowfield is thenfocussedto afinite-sizeddot at the
planeof theknife edge,therectangularelementhasaheightof h', andit hasbeendeflectedvertically
by _¢ey;_¢is afunctionof thedistancebetweentheflowfield andtheknife edge.Thereis alsoa
horizontaldeflection;however,it is unimportantin this case.If thehorizontalknife edgeis placedat
thecenterof theplane,theratio of light notblockedby theknife edgeto theamountof theoriginal
light is

KEy 1
0 for h' < 2

KEy 1
1 for h' >2

1 KEx KEy 1
2 + h' for -1 <--fir- < _

The intensity patterns in the schlieren are proportional to the square of this ratio.

As mentioned previously, shadowgraphs are not constructed in CISS from line integrals of sec-

ond derivatives of the refractive index. Instead they are given by variations in the intensity caused by

the deflection of the Light. The location and size of a square element of light after it passes through

the flowfield is determined by the deflection of light sources that define the comers of the element.

The total angular deflection for these light sources is a function of the angle at which the light exits

the flowfield; that is, shadowgraphs are also governed by ex and ey. The deflected square element is

then projected onto the image plane, and the amplitude of the electric field at each i,j-element in the

image plane is increased by

Bf n Aij

AEij = E o B i

Here, Eo is the amplitude of the initial field, Bf c3 Aij is the area of the intersection of the deflected
element with the i,j-element of the image plane, and Bi is the initial area of the deflected element.

The intensity pattern observed in the shadowgraph is proportional to the square of the Eij's.

The time requirements for constructing these images from simulated flowfields are linearly pro-

portional to the grid size and the number of pixels defining the image. For 2-D flow fields, the image

construction takes only a few seconds on a CRAY-YMP. For 3-D images defined by 400,000 pixels,

construction using flowfield solutions with 250,000 grid points takes a few minutes.
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CONSTRUCTED IMAGES

Representative images are shown in this section for several types of hypersonic flows including

ramp, nozzle, reacting, and blunt-body flows. In figure 3, constructed and experimental schlieren are

shown for a 2-D, 15 ° compression comer; a horizontal knife edge was used for both the schlieren.

The shocks, shear layers, and separation region observed in the experimental schlieren are simulated

by the constructed schlieren. The dark regions in the constructed schlieren are caused by rapid

increases in densityacross the computed shocks, and they correspond to dark regions in the experi-

mental schlieren. The light regions in both the constructed and experimental schlieren are identified

with shear layers, and they are caused by density gradients near the surface. These shear layers lift

off the surface when separation occurs, and the extent of the computed and experimental separation

regions can be compared. The sharpness of the features in the constructed schlieren can be further

improved by using grid adaptation to reduce solution errors.

In figure 4, constructed and experimental shadowgraphs for a generic, National Aerospace Space

Plane (NASP) nozzle configuration, the Single Expansion Ramp Nozzle (SERN), are shown. Both

the freestream and nozzle flows are supersonic. The flowfield solution in figure 4(a) is a 2-D, ideal-

gas simulation at the symmetry plane; the solution in figure 4(b) is 3-D (ref. 6). The interaction of

the external flow with the nozzle plume is complicated, and all the main features observed in the

experimental shadowgraph are captured in the constructed shadowgraphs. These features include the

leading edge shock, separation from the nozzle, and the shocks, shear layers, and expansion fans

caused by the interaction of the nozzle plume with the freestream. As with the schlieren, dark and

light regions in the constructed shadowgraph correspond to dark and light regions in the experi-

mental shadowgraph; however, in the shadowgraphs, each shock is described by the combination of

a dark and light line. In the two constructed shadowgraphs, the effects of grid resolution and solution

errors can be seen. The grids in the two 2-D solutions are very fine, and the constructed shadow-

graph closely resembles the experimental shadowgraph. For the 3-D solution, although multiple

grids were used, the gridding was much coarser than that used for the 2-D solutions. The shocks,

shear layers, and expansion fans were not as well resolved in the 3-D flow field solution and, hence,

are much more diffuse in the shadowgraph.

Constructed schlieren Experimental schlieren

Figure 3. Constructed and experimental schlieren for a two-dimensional compression comer. Flow

solution: Tokarcik et al. (ref. 4); experiment: Delery and Coet (ref. 5).
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a) 2-D solution b) 3-D solution c) Experiment

Figure4. Constructedandexperimentalshadowgraphsfor SERN.Two-dimensionalflow solution
andexperiment:Ruffin et al. (ref. 6).

The solutionsin figures3 and4 areideal-gascomputations,andtherefractiveindexis simply
givenby aconstanttimesthedensity.For reacting flows, the refractive index is a function of the gas

species. In figure 5, a constructed shadowgraph is shown for an axially-symmetric, real-gas, flow-

field solution for a ballistic range shot of a hemisphere cylinder in a combustible mixture (refs. 7

and 8). Also shown is an experimental shadowgraph (ref. 9). This flow is very complex, and many of

the features observed in the shadowgraph are three dimensional and difficult to identify in contour

plots. In the constructed shadowgraph most if not all of the features in the experimental shadowgraph

are captured, and the computations and experiment can be compared on a one-to-one basis. The

ability to construct shadowgraphs facilitates the comparison of computed and experimental results,

especially for very complicated flows.

In figure 6, a constructed and experimental infinite-fringe interferogram is shown for a ballistic

range test of the Aeroassist Flight Experiment (AFE). The flowfield simulations were performed

using an ideal-gas CFD solver (ref. 10); the grid was adapted to the flowfield solution using SAGE

(ref. 11). A one-to-one comparison of the two interferograms is not possible; the flowfield solution is

for a model with no yaw, the experimental model did yaw. However, there are similarities. The con-

structed and experimental interferograms both show similar light and dark patterns, and the number

of fringe shifts are comparable. The location of the fringes provides information concerning the

computed and experimental integrated index of refraction.
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Constructedshadowgraph Experimentalshadowgraph

Figure5. Constructedandexperimentalshadowgraphsfor ahemisphere-cylinderin acombustible
mixture.Flowfield solution:G. Wilson (refs.7 and8); experiment:Lehr (ref. 9).
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Constructedinterferogram Experimentalinterferogram

Figure6. Constructedandexperimentalinfinite-fringe interferogramsfor anAFE model.Three-
dimensionalflowfield solution:E. Venkatapathyet al. (ref. 10);experimentperformedat NASA
AmesResearchCenter'sballistic range.

CONCLUDING REMARKS

The construction of interferograms, schlieren, and shadowgraphs from 2-D and 3-D flowfield

solutions permits one-to-one comparisons of CFD and experimental results. Experimental interfero-

grams provide quantitative information for integrals of the refractive index and density. This infor-

mation can be used to verify 3-D flowfield solutions only when line of sight integrals are computed

and interferograms are constructed from the flowfield solutions• The positions of shocks and shear

layers are easily obtained from experimental schlieren and shadowgraphs. When contour plots are

used to locate shocks and shear layers, interpretation of the contour lines is required. Furthermore,

the 3-D nature of the flow is not shown. In constructed schlieren and shadowgraphs, the shocks and

shear layers are def'lned by the same intensity variations as in the experimental images. Hence, com-

parison of the positions of these flow features can easily be made. In addition, 3-D effects are

included in the construction.

CISS has proven its capability in constructing interferograms, schlieren, and shadowgraphs from

a variety of ideal- and real-gas, 2-D, axially symmetric, and 3-D flowfield solutions. For the exam-

ples shown here, the constructed and experimental images are very similar. However, the quality of

the flowfield solution does affect the quality of the constructed images. Insufficient or improperly

placed grid points can cause spreading of shocks and shear layers in the constructed images• CISS

not only provides an excellent tool for comparing flowfield solutions with experiment, it can be used

to identify problem areas in the flowfield solutions•
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